Learn about the most recent advances in 2D materials with this comprehensive and accessible text. Providing all the necessary materials science and physics background, leading experts discuss the fundamental properties of a wide range of 2D materials, and their potential applications in electronic, optoelectronic and photonic devices. Several important classes of materials are covered, from more established ones such as graphene, hexagonal boron nitride, and transition metal dichalcogenides, to new and emerging materials such as black phosphorus, silicene, and germanene. Readers will gain an in-depth understanding of the electronic structure and optical, thermal, mechanical, vibrational, spin and plasmonic properties of each material, as well as the different techniques that can be used for their synthesis. Presenting a unified perspective on 2D materials, this is an excellent resource for graduate students, researchers and practitioners working in nanotechnology, nanoelectronics, nanophotonics, condensed matter physics, and chemistry.
Author(s): Phaedon Avouris, Tony F. Heinz, Tony Low
Publisher: Cambridge University Press
Year: 2017
Language: English
Pages: 522
Contents......Page 5
Contributors......Page 12
Introduction......Page 18
Part I......Page 22
1.1 Chemical Bonding and Ground-State Structure......Page 24
1.2 Thermal (In)Stability of 2D Crystals......Page 26
1.3 Electronic Structure of Single-Layer Graphene......Page 28
1.4 Electronic Structure of Bilayer Graphene......Page 34
1.5 Graphene as a Bridge between Condensed Matter and High-Energy Physics......Page 37
1.6 References......Page 38
2.1 Boltzmann Transport Theory......Page 42
2.2 Charged Impurities......Page 45
2.3 Resonant Scatterers......Page 48
2.4 Corrugations of the Graphene Sheet......Page 50
2.5 Phonons......Page 51
2.6 References......Page 53
3 Optical Properties of Graphene......Page 55
3.1 Tunable Interband and Intraband Transitions in Electrically Gated Graphene......Page 56
3.2 Landau Level Transitions in Graphene under a Magnetic Field......Page 60
3.3 Plasmon Excitations in Graphene......Page 61
3.4 Bilayer and Multilayer Graphene......Page 63
3.5 References......Page 65
4.1 Introduction......Page 69
4.2 Experiments......Page 70
4.3 Non-linear and Anisotropic Response of Graphene......Page 74
4.4 Experimental Validation......Page 78
4.5 Instabilities......Page 80
4.6 Defective Graphene......Page 81
4.8 References......Page 85
5.1 Structure and Vibrations of Monolayer Graphene......Page 88
5.2 Many-Layers Graphene and the Interlayer Vibrations in 2D Systems......Page 91
5.3 The Quantum Nature of Atomic Vibrations......Page 94
5.5 Probing Phonons Near Defects and Edges/Grain Boundaries......Page 96
5.6 References......Page 100
6.1 Thermal Conductivity of Graphene and Few-Layer Graphene......Page 107
6.2 Isotope and Rotational Engineering of Thermal Properties of Graphene......Page 110
6.3 Graphene Applications in Thermal Management Technologies......Page 113
6.4 Conclusions......Page 117
6.5 References......Page 118
7.1 Macroscopic Approach to Graphene Plasmonics......Page 121
7.2 Microscopic Approach......Page 128
7.3 Plasmon Damping......Page 132
7.4 Experimental Observation of Graphene Plasmons......Page 134
7.5 Applications......Page 151
7.6 References......Page 153
8.1 Introduction......Page 158
8.2 Basic Electrical Properties of p–n Junctions......Page 159
8.3 Photon Analogies for Carriers in Graphene......Page 165
8.4 Future Directions......Page 173
8.5 References......Page 174
9.1 Introduction......Page 176
9.2 Graphene RF Transistors and Circuits......Page 177
9.3 Graphene Nanostructures......Page 183
9.4 Bilayer Graphene Transistors......Page 186
9.5 Vertical Graphene Transistors......Page 188
9.6 Conclusion......Page 191
9.7 References......Page 192
10.1 Introduction......Page 197
10.2 Light to Current Conversion......Page 198
10.3 Photodetectors......Page 201
10.4 Light Modulators......Page 204
10.5 Ultra-Fast Lasers......Page 206
10.6 Thermal Radiation Sources......Page 208
10.7 Passive Optical Elements......Page 209
10.8 Transparent Conductive Electrodes......Page 210
10.9 References......Page 211
11.1 Introduction to Spintronics......Page 214
11.2 Advantages of Graphene for Spintronics......Page 215
11.3 How to Measure Spin Lifetimes in Graphene and 2D Materials......Page 217
11.4 New Spin Relaxation Mechanisms......Page 223
11.5 Proximity Effects and Spin Gating......Page 229
11.6 References......Page 232
12.1 Introduction......Page 236
12.2 Mechanical Assembly of Graphene–BN Heterostructures......Page 237
12.3 High-Performance Graphene......Page 242
12.4 Beyond Graphene......Page 249
12.5 References......Page 250
13.1 Introduction......Page 255
13.2 CVD Method for Graphene Growth......Page 256
13.3 Prospects......Page 267
13.4 References......Page 268
Part II......Page 274
14.1 Introduction......Page 276
14.2 Electronic Structure......Page 277
14.3 From Density Functional Theory to Tight-Binding Approximation......Page 281
14.4 Including Strain in the Tight-Binding Hamiltonian......Page 285
14.5 Low-Energy Model of Strained Transition Metal Dichalcogenides......Page 287
14.6 Strain Engineering in Transition Metal Dichalcogenides......Page 289
14.7 References......Page 293
15.1 Introduction......Page 296
15.2 Electronic Structure at the Band Edges......Page 297
15.3 Valley-Spin Physics in Monolayers......Page 300
15.4 Valley and Spin Physics in Bilayers......Page 306
15.5 References......Page 309
16.1 Introduction......Page 312
16.2 Ballistic Transport Simulations......Page 314
16.3 Scattering Mechanisms......Page 316
16.4 Point Defects......Page 320
16.5 References......Page 325
17.1 Fundamentals of 2D TMD Heterostructures......Page 327
17.2 Interlayer Exciton Properties......Page 332
17.3 Valley Optoelectronic Properties of 2D Heterostructure......Page 336
17.4 Outlook......Page 342
17.5 References......Page 343
18.1 Introduction......Page 346
18.2 Light-Emitting Diodes and Lasers......Page 347
18.3 Photovoltaic Devices......Page 350
18.4 Photodetectors......Page 353
18.5 Valley-Dependent Optoelectronic Devices......Page 357
18.6 References......Page 359
19.1 Introduction......Page 361
19.3 Sulfurization/Selenization of Transition Metal Oxides......Page 362
19.5 Physical Vapor Phase Transport......Page 368
19.7 References......Page 371
20.1 Introduction......Page 376
20.2 Point Defects......Page 377
20.3 Topological Defects: Dislocations and Grain Boundaries......Page 380
20.4 Dislocations in Bilayer Materials......Page 387
20.5 Other 1D Defects – Edges, Interfaces, and Nanowires......Page 389
20.6 Summary......Page 392
20.7 References......Page 393
Part III......Page 396
21.1 Crystal and Electronic Band Structures......Page 398
21.2 Electronic Properties......Page 406
21.3 Optical Properties......Page 409
21.4 Thermal Properties......Page 416
21.5 Mechanical Properties – Elasticity......Page 422
21.7 References......Page 425
22 Anisotropic Properties of Black Phosphorus......Page 430
22.1 Synthesis of Black Phosphorus......Page 431
22.2 Anisotropic Response of Black Phosphorus......Page 433
22.4 References......Page 446
23.2 Optical Properties......Page 452
23.3 Optoelectronic Devices......Page 459
23.4 Outlook and Remarks......Page 467
23.5 References......Page 469
24.2 The Advent of Silicene......Page 475
24.3 Epitaxial Silicene......Page 476
24.4 Electronic Structure of Silicene......Page 479
24.5 Functionalization of Silicene......Page 480
24.6 Multilayer Silicene......Page 482
24.7 Germanene and Stanene......Page 484
24.9 References......Page 486
25.1 Motivation and Methodology......Page 489
25.2 Group IV Elements: Silicene, Germanene......Page 491
25.3 Group III–V and II–VI Compounds......Page 495
25.4 Group V Elements: Nitrogene and Antimonene......Page 497
25.5 Transition Metal Oxides and Dichalcogenides......Page 498
25.7 References......Page 499
Index......Page 502