Книга содержит нетрадиционное изложение курса теории упругости, базирующегося на специальных разделах теории дифференциальных уравнений в частных производных и математического анализа. В первой главе в достаточно компактной форме дается конспективное изложение тех математических дисциплин, которые уже с успехом используются и могут быть использованы в дальнейшем при решении на современном уровне различных задач теории упругости. Две следующие главы посвящены концентрированному, но вместе с тем достаточно полному изложению собственно предмета теории упругости, включая такие сравнительно новые разделы, как электромагннтоупругость и механика хрупкого разрушения, постановке краевых задач, а также изложению некоторых приемов сведения краевых задач теории упругости к классическим задачам математиче- математической физики. В остальных главах книги (главы VI-VIII) конкретные математические методы, указанные в заглавии, применяются к решению определенных классов задач теории упругости. В ряде случаев эффективность того или иного метода демонстрируется иа примерах таких задач, решение которых было получено только в последнее время. Большое внимание уделяется как вопросам строгого математического обоснования тех или иных алгоритмов, так и приемам их численной реализации. Кинга предназначена для студентов университетов и факультетов <Прикладная математика> вузов, аспирантов, инженеров и научных работников, специализирующихся по теории упругости н многочисленным ее приложениям.
Author(s): Партон В.З., Перлин П.И.
Publisher: Наука
Year: 1981
Language: Russian
Pages: 688
Tags: Механика;Механика деформируемого твердого тела;Теория упругости;