Численные методы. Решение уравнений

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Численные методы рассмотрены в данном издании с точки зрения исследования функций (том 1) и решения уравнений (том 2). Первый том состоит из 5 глав, в которых рассматривается аппроксимация функций, интерполяция, аппроксимация Паде, численное дифференцирование, конечные разности, численное интегрирование, квадратные формулы Ньютона-Котеса, формулы Гаусса-Кристофеля, ортогональные полиномы, погрешность и примеры квадратных формул, формулы Филона, а также поиск минимума, методы парабол и золотого сечения, координатный и наискорейший спуск, метод сопряженных направлений. Второй том включает в себя 4 главы, в которых исследована системы уравнений, одномерный случай, метод Ньютона и метод секущих, а также многомерный случай. Также исследуется решение линейных систем, метод Гаусса, метод прогонки и метод итераций для решения линейных систем. Представлены алгебраические спектральные задачи, собственные числа эрмитовых матриц, интерполяционный метод и обратные итерации, а также неэрмитовы матрицы. Изучены обыкновенные диффиренциальные уравнения, задача Коши (получение явных схем, схема Эйлера, методы Рунге-Кутта и Адамса), задача Штурма-Лиувилля (метод стрельбы и метод сеток) и краевая задача (метод стрельбы и сеток, сходимость сеточных методов и метод Нумерова), а также разностный оператор второй производной, резольвента и теория возмущений. Приведенная библиография частично представляет собой источник справочного материала, но, в основном, рассчитана на дальнейшее изучение численных методов.

Author(s): Буслов В.А., Яковлев С.Л.

Language: Russian
Pages: 44
Tags: Математика;Вычислительная математика;