Комплексный метод граничных интегральных уравнений теории упругости

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Монография содержит основы теории и численной реализации комплексных граничных интегральных уравнений (КГИУ). Она задумана как продолжение классического труда Н. И. Мусхелишвили в компьютерную эру. Отмечаются значительные вычислительные преимущества комплексных переменных перед вещественными переменными. Выводятся известные и новые КГИУ для однородных и кусочно-днородных областей, тел с трещинами, вырезами и включениями, для периодических и двоякопериодических задач. Устанавливаются связи между вещественными и комплексными граничными интегральными уравнениями; даются рекомендации по выбору КГИУ в зависимости от особенностей прикладной задачи. Изложена теория комплексных гиперсингулярных интегральных уравнений, представляющих наиболее перспективное средство изучения задач о трещинах и средах со структурой. Описываются особенности численной реализации метода КГИУ в форме комплексных методов граничных элементов и механических квадратур. В явном виде даются все необходимые для разработки программ квадратурные формулы для обычных и концевых элементов. Приводятся примеры, иллюстрирующие высокую эффективность метода КГИУ. Книга рассчитана на студентов, аспирантов, преподавателей, инженеров и научных работников, использующих компьютеры для расчета напряжений и коэффициентов интенсивности напряжений при решении проблем материаловедения, механики разрушения, горной геомеханики, машиностроения, судо- и авиастроения. Значительная часть приводимых теоретических результатов, будучи оригинальной, представляет интерес и для специалистов в области теории упругости.

Author(s): Линьков А.М.
Publisher: Наука
Year: 1999

Language: Russian
Pages: 384
City: СПб
Tags: Механика;Механика деформируемого твердого тела;Теория упругости;