Численные алгоритмы классической матфизики. XXX. Вычисление собственных значений оператора Лапласа в многоугольной области

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Москва, препринт ИПМех РАН № 970, 2011 г., 16 с. Описывается методика численного вычисления собственных чисел оператора Лапласа в многоугольнике. В качестве примера рассмотрена L – образная область. Строится конформное отображение круга на эту область при помощи интеграла Кристоффеля-Шварца. В круге задача решается по ранее разработанной автором (совместно с К. И. Бабенко) методике без насыщения. Вопрос состоит в том, применима ли эта методика к кусочно-гладким границам (конформное отображение имеет на границе особенности). Проделанные вычисления показывают, что можно вычислить около 5
собственных значений оператора Лапласа в этой области с двумя-тремя знаками после запятой.

Author(s): Алгазин С.Д.

Language: Russian
Commentary: 1577430
Tags: Математика;Вычислительная математика