Représentations des espaces tordus sur un groupe réductif connexe p-adique

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Let F be a locally compact non-Archimedean field, of any characteristic. Let G be a connected reductive group defined over F, and G^ be a twisted G-space also defined over F. The set G^(F) is assumed to be non-empty, and it is endowed with the topology defined by F. We fix a character (i.e. a continuous homomorphism in C^) of G(F). In this memoir, we study the theory of (complex, smooth) -representations of G^(F), from that of representations of G(F). An -representation of G^(F) is given by a representation (,V) of G(F) and a map from G^(F) into the group of C-automorphisms of V, such that (xy) = (x) ()()(y) for all G^(F) and all x, yG(F). If the underlying representation of G(F) is admissible, we can define the character _ of , which is a distribution on G^(F). The main results proved in this memoir are: itemize if is of finite length, then the distribution _ is given by a locally constant function on the open set of (quasi-)regular elements in G^(F); the scalar Paley-Wiener theorem, which describes the image of the Fourier transform – the map which associate to a compactly supported locally constant function on G^(F) the linear form _() on a suitable Grothendieck group; the spectral density theorem, which describes the kernel of the Fourier transform. itemize

Author(s): Bertrand Lemaire, Guy Henniart
Series: Asterisque 386
Publisher: Société mathématique de France
Year: 2017

Language: French
Pages: 378