**Section Modulus**Full Download

**Section Modulus**

**Section Modulus**

Missing online PDF reader

X

Sponsored High Speed Downloads

6188 dl's @ 1613 KB/s

Verified - **Section Modulus**

2584 dl's @ 4784 KB/s

5983 dl's @ 4434 KB/s

**Section** **Modulus** and Moment of Inertia Calculation Guide legend: Sheet 1 is introduction and explanation of terms Sheet 2 is calculaton for a solid surface Sheet 3 is calculation for a cored surface symbols b = width or horizontal dimension of component

**Section** **Modulus** h Stress at Center Ends Supported W Z Span L lbs in W12x14 Fixed Ends and Ends Thkn. E Deflection W10x17 price/lb price $ w ft Cost Down force Side force formula table p194 "I" "H" Ends supported Stress at center W12x35 W8x40 Vertical load Horizontal load WH

**Section** **Modulus** about Z axis Radius of gyration about Z axis Moment of Inertia about Y axis **Section** **Modulus** about Y axis Plastic **Modulus** about Z axis Plastic **Modulus** about Y axis Torsional moment of Inertia Warping Constant Clear depth of web (YD minus twice FLTK)

**Section** **Modulus** Z kN/m2 Web h Longitudinal stiffener Effective flange of the girder: be = 0.84 b Effective flange of the stiffners: be = 60 * t (web) (DnV Part 3, Ch 7 Sec 3 C400) Toppflange eff breadth be Toppflange breadth b The loss of the Derbyshire Project NA 240A Appendix 63.00

Global Hull Girder **Section** **Modulus** and Bending Stress Spreadsheet Stillwater Moment Hogging Moment Sagging Moment LT-ft Stillwater deck stress Stillwater bottom stress Hogging deck stress Hogging bottom stress Sagging deck stress Sagging bottom stress psi

Tongue **section** **modulus**, in3 0.49 Your result Tongue Factor 5.09 0.50 4.00 1000.00 daves Read the result in the box with blue text SQUARE & RECTANGULAR TUBE PROPERTIES - WITH HOLES Dimensions Enter your data in boxes with red text Tube height 2.00 in Tube width 2.00 in Wall thickness 0.13 in y max

**Section** **Modulus** left: SAA left = IAA / (-xNA) **Section** **Modulus** right: SAA right = IAA / xNA XA = degree kip*in eAA B = eAA C = eAA D = Moment Arm Member B: eAA B = XA - xNA +YA*tan(qB) Moment Arm Member C: eAA C = XA - xNA +YA*tan(qC)

**Modulus** of Elasticity-Longitudanal Direction **Modulus** of Elasticity-Transverse Direction Moment of Inertia **Section** **Modulus** Depth of **Section** Width Web Thickness Flange Thickness Weight Standard Color Structural Rib Reinforced Corner Material ft-lbs/ft x10⁶ psi

**Section** **Modulus** about Y-axis Distance from C.G. of extreme point in y-direction Distance from C.G. of extreme point in x-direction Width b(mm) Height h(mm) STIFFNER **SECTION** PROPERTIES This Excel sheet calculates the combined properties of Deck Plate and underdeck Stiffner.

BEAM CALCULATOR Variable Value S - **Section** **Modulus** - Allowable Stress Design (AISC 2-4) M= S= in# # in D= in4 (ii) (i) A. Cantilevered beam D*I= LOAD INCREASING TOWARDS FIXED END

Sheet3 Sheet2 Sheet1 Title Page (on outside of binder and first page) Hull **section** **modulus** spreadsheet Midship construction drawing showing welds, scantlings, materials, etc.

Sheeting Specs SZ.-In.Lb. 6.a. 6.b. 13.a. 13.b. 14.a. 14.b. x y **Section** Area Weight Material Thickness Moment of Inertia **Section** **Modulus** Center of Per Lin. Per Sq.

**section** **modulus** 36000.00 yield of material 10884.15 equals maximum stress in psi 3.31 safety factor 33000000.00 **modulus** of elasticity 0.69 moment of inertia max deflection .5", or this 0.31 3.00 3.00 equals actual deflection in inches **Section** Properties Pipe/Tube 1.94 Small diameter 2.38

Concrete prestressed girder, span, **section** **modulus** Concrete stress distribution at midspan at release of prestress SE I Exams - p. 31 Cast in place slab and beam **section** Maximum size of coarse aggregate for the pour SE I Exams - p. 32

**Section** **Modulus** (in³)= THIS SPREADSHEET IS FOR REFERENCE ONLY AND TO BE USED WITHOUT ANY WRITTEN OR IMPLIED LIABLITY BY MFP DESIGN, LLC Weight Per Foot of Pipe & Water Nom Size Sch 10 Sch 40 P Weight of water filled pipe, plus 250 lbs. L Length of span of trapeze PL p

**Section** **modulus** indicated on table. Minimum shaft diameter in mm. Distance between bearing centres in metres. Calculation to determine the minimum diameter of the rudder coupling bolts. ds n Number of bolts (minimum of 4).

The **section** **modulus** should not be reduced without agreement between Purchaser and Manufacturer. The current wording seems adequate. Drop this ballot item. Leave the text as-is in the current standard.

complex profiles basic profiles i beam calculation moment of inertia elastic **section** **modulus** flange width flange thickness overal height web thickness

The **section** **modulus** about the centroidal X-axis refereced to the top (upper most point) in the total **section** is calculated as follows: Sx(top) = Ix/(Yt-Yc(bot)) The **section** **modulus** about the centroidal X-axis

**Section** **Modulus** X-Axis Sx in3 Summary of Results for **Section** and Dimensions Considered: Radius of Gyration X-Axis rx Member Fc Fa Fbx Mx Fby My Moment Of Inertia Y-Axis Iy **Section** **Modulus** Y-Axis Sy [Allowable Stress values in ksi; Fa in kips; Moments in kip-in]

**Section** **Modulus** Z in3 Beam Total Properties Beam Weight Wb Lbs Live Load Carried Wll Total Load Carried Wt Total Load/Ft WtTot_Ft Lbs/Ft Moments X Position Used x Moment UDL MxUDL ft-lbs Moment P1 MxP1 Moment P2 MxP2 Total Moment at X MXTot In-lbs Stress Calculation

**Section** **Modulus** X-Axis Sx Channel Flange Width bf used to calculate buckling Web Height used for Buckling h = d - 2tf Flange Thickness tf Web thickness tw in2 Web Area ( Aw ) Flange Area (Af) in4 Moment Of Inertia X-Axis Ix in3 Radius of Gyration X-Axis rx

**Section** **Modulus** = Pipe Data: Nominal Size BACK Note: Tables can be easily copied & sorted as necessary. 2. Determine the nominal size of the pipe that has the next largest **section** **modulus** than is required by the user calculation. Moment = in-lbs

Terms Consistent Units Notes Features Decimals Volume Viscosity-Kinematic Viscosity-Dynamic Time Temperature Velocity (Angular) Speed **Section** **Modulus** Moment; Torque

Stiffener **Section** **Modulus** (Z) is based on stiffeners spaced 460mm apart. Where Stiffener **Section** **Modulus** (Z) is based on stiffeners spaced 460mm apart. Where 1.00 2.00 the spacing differs from 460mm, required Z has been modified in direct proportion.

Beam **section** **modulus**, Sx = in^3 Allowable stress, Fa = lbs/in^2 lbs ft Beam span in inches, Li = L * 12 in in-lbs CALCULATE continued Total moment stress, Fm = Mt / Sx Fa / Fm in^4 **Modulus** of elasticity, E = in Max allowable deflection = Beam weight per foot, w = Load, P =

**Section** **Modulus** in bottom , Zb Centroid, X m Centroid, Y (from 0,0 origin) Centroid, Y (from top most point) Perimeter of the **section** From Origin Calculation for Ixx (torsional, J) Ai, mm2 Xi, mm Ai . Xi Yi, mm Ai. Yi Ixx Iyy a - Length in longer side b - Length in shorter side Part a b J 0.00

Weight Estimate **Section** **Modulus** Deck Mast & Bulkheads Keel & Floors Graph Z min Trans Graph of Z Min for Long'l Internal Structure Coefficients & Graphs

Spsn: Plastic **section** **modulus** for reinforcement within the region of 2hn from the middle line Wpan: Plastic **section** **modulus** of steel within the region of 2hn from the middle line: Wpan

**Section** **modulus**, Ixx = A*Yn A*Yn^2 **Section** moment of inertia, Ixx = = H / 2 Rectangular **Section** Properties Center of area, C1 = C2 = Symmetrical H **Section** Properties B1 - C1 Y1 + H1/2 Center of area, C1 = ΣA*Yn^2 + ΣIcg T*D / (2*J) H/A Combined direct and bending, Fx =

Rectangular HSS (Tube) **Section** Properties from AISC Version 3.0 CD Database (2001) and AISC 9th Edition Manual (1989) Stress Ratio for Round HSS Shapes ... E = **modulus** of elasticity for steel = 29,000 ksi 'Mrx' is the allowable resisting moment for X-axis bending, ...

Young's **modulus** of elasticity, E (psi) Dimensions Physical Properties Calculated Values **section** **modulus**, S (in^3) resisting moment, Mr (in-lb) Bending stress ok? (Mb<Mr) max bending moment, Mb (in-lb) total vertical load, lb Simply supported wooden beam

**Section** **Modulus** of Collars **Section** **Modulus** Ratio of Collars to Pipe YES SHOULD CONNECTION BE MADE ?? Wall Forces Wall Force in Doglegs 5.00 in Pipe OD 4.28 in Pipe ID 21.00 ppf Weight of Pipe 30.00 ft Length of a Joint of Pipe 8.00 in Collar OD 3.00 in Collar ID

**Section** **modulus** RHS - Rectangular Hollow Sections (rectangular tube) Height Major Equal Angle Height/ x bar/ y bar * * x bar/ y bar are distance from flange to neutral axis Unequal Angle Thickness Diameter CHS - Circular Hollow Sections (round tube)

Sheet3 Sheet2 Sheet1 Cc E FS k Sy Ix Moment of Interia (in^4) Sx **Section** **Modulus** (in^3) Wall Thick (in) A **Section** Area (in^2)

**Section** **Modulus** (in^3) Moment Between Hull and Deck (in-lb) Beams Required (#) Beams Planned (#) **Section** **Modulus** Planned (in^3) Missing **Section** **Modulus** (in^3) Missing Beams (#) 48.00 22118.40 0.60 0.50 64.00 8.00 5292.43 3.00 22.00 3.00 18.00 2.00 1287.76 48.00 6.00 2.00 48.00 8.00 48.00 2.00 2 ...

Sp = positive **section** **modulus** of steel deck/ft. width (from Vulcraft Table) 2.01 14.00 1000.00 0.14 0.25 0.39 0.56 0.76 1.00 1.26 1.60 1.97 0.52 Sn = negative **section** **modulus** of steel deck/ft. width (from Vulcraft Table) 0.92 1-Span N.A. 2-Span 1.60 1.20 1.40 1000.00 1.25 0.75 3-Span 1.60 1.20 1 ...

elastic **section** **modulus** of **section** S where k = 1 for gravity loads, 4/3 for lateral loads. k Q a , q MAX ksf ksf, CASE 3 CASE 2 CASE 1 Pu P CASE 3: CASE 2: DL + LL CASE 1: ANALYSIS ft L FOOTING LENGTH B FOOTING WIDTH Qa ALLOWABLE SOIL PRESSURE T FOOTING THICKNESS Df FOOTING EMBEDMENT DEPTH ws

Foglio3 Foglio2 Foglio1 Sectional area Mass Elastic **section** **modulus** Moment of kg/m TOT N°palancole ACC AZ38-700 AZ40-700 AZ36-700 AZ48 AZ46 per m of inertia Radius

**Section** **Modulus** of Concrete Footing, Sz **Section** **Modulus** of Concrete Footing, Sx Is 1.2*Mcrz <= Mrz ? 120% of the Cracking Moment, 1.2*Mcrz 120% of the Cracking Moment, 1.2*Mcrx Is 1.2*Mcrx <= Mrx ? Is As prov'd >= 1.33*As req'd ? As required---- OR ----

**section** **modulus** (width (b) is OK; but Depth (d) is squared and) is much more effective in reducing Bending. n Pin/Hinged connections iclude most wood to wood, bolted steel, and precast concrete connections. n fixed connections include most welded steel / steel

4.5.**Section** **Modulus** cm.3 3.6.Design Live Load kg./m.2 4.6.Moment of Inertia cm.4 5.1.Ratio of 6.1.Req.Total Force P 5.2.Ratio of 6.2.Req.Max.P.C.Wire tendons 5.3.Ratio of Total Deflection Due To DLp + DLt + LL = Use Value of Elongation Range 0.631 cm. - 0.70 cm. Per Bed Length 1 m.

**Section** **Modulus** left: SAA left = IAA / (-xNA) **Section** **Modulus** right: SAA right = IAA / xNA XA = degree kip*in eAA B = eAA C = eAA D = Moment Arm Member B: eAA B = XA - xNA +YA*tan(qB) Moment Arm Member C: eAA C = XA - xNA +YA*tan(qC)

Rectangular Hollow **Section** Cold Formed..BS EN 10219:1997 Table of Dimensions + Properties Size Thick's Corner Radius Mass /m Area of **Section** Second Moment Of Area Radius Of Gyration **Section** **Modulus** Plastic **Modulus** Torsional Constants **Section** Surface Area Ext'l Int'l Axis x-x Axis y-y Inertia ...

Cross-**section** - **section** **modulus** in bend Cross-**section** - Polar moment of inertia Shaft design and calculation Shaft shape and dimensions X-coordinate of the left support (bearing) X-coordinate of the right support (bearing) Loading Additional rotating masses (resonance speed)

**Section** **Modulus** SPAN Deflection Coefficient E = 29,000 ksi D(ratio) = Allow. D(ratio) =---2. To find the actual deflections for the loads given above, divide the coefficient of deflection for the span by the thickness of the plate in inches. 3.

**Section** **modulus**, x **Section** **modulus**, y Flange slope radius. These values might be used depending on profile type Minimum x value of primary or secondary part(s) extremas in connection coordinate system Member type (Column, Beam) Connection id in model

**Section** **modulus** - Clean frame rails A/F will be determined by body type. Also frame extensions for plow provisions. A/F will be determined by body type. Also frame extensions for plow provisions. Electrical Two (2) heavy duty batteries for a diesel engine

Plastic **section** **modulus** of member taken about X-axis (in.^3) Plastic **section** **modulus** of member taken about Y-axis (in.^3) E = G = Warping statical moment at a point on the cross **section** (in.^4) Statical moment for a point in the flange directly above the vertical edge of the web (in.^3)