**Beam Design**Full Download

**Beam Design**

**Beam Design**

Missing online PDF reader

X

Sponsored High Speed Downloads

1430 dl's @ 1397 KB/s

Verified - **Beam Design**

8836 dl's @ 9382 KB/s

9899 dl's @ 8919 KB/s

Title: **Beam** **Design** Template Subject: **Beam** **Design** Author: JEM Keywords: **Beam** **Design** Description: For Use in AED-2 Last modified by: Mark A. Orsini Created Date

Title: **Beam** **Design** Template Subject: **Beam** **Design** Author: JEM Keywords: **Beam** **Design** Description: For Use in AED-2 Last modified by: student Created Date

**Design** DATA sheet = x / + using mm bars A 3.14xdia2 4 x100 Nomber of Bars = say No. % Hence Provided fy Wall width m-mm mtr N-m M N/mm2 Tensile stess Tensile stress Let width of **Beam** self Load of **Beam** per meter run External load kN/m N/m External Load N-mm or 10 6 10 3 mm2 mm2 x() \ N tv N / mm2 ...

Table2002.4 6061T6 Post 6061T6 **Beam** Allowables Questions Plans Examination Checklist Extrusions **Beam** Moment Calculator Calculator Notes BeamProps columnprops

**Design** of T-**Beam** Roof Slab 1.00 Room size 6.00 10.00 2.00 R.C.C. supported **Beam** 0.30 300.00 1000.00 3.00 End bearing on wall 0.40 400.00 4.00 2000.00 Floor finishing 600.00 5.00 Concrete 20.00 Unit weight concrete 25000.00 7.00 13.33 3.00 3.00 6.00 Steel

**BEAM** **DESIGN** PROJECT: JOB NO: Designed: CLIENT: TITLE: Checked: SUBJECT: Fuat Ornarli Last Updated: fy= fc'= Cover= **BEAM** **DESIGN** INPUT L= ft-kips w conc= b= in h= d=

D-**Beam** Size Project Name: Job Number: **Design** Information DB Properties Steel Section Transformed Section psf ft-k in ft in4 in3 b = Dead Load = Live Load = DB Span = Initial Load - Precomposite Total Load - Composite Plank Span = Grout f'c = ksi

rectangle concrete **beam**(3) ((T)) concrete **beam** (2) ((T)) concrete **beam** rectangle concrete **beam**(2) rectangle concrete **beam** (ACCORDING TO ACI-99 CODE)

aisc aisc 9th girder aisc 360 a a a a a b hp8x36 hp10x42 hp10x57 hp12x53 hp12x63 hp12x74 hp12x84 hp14x73 hp14x89 hp14x102 hp14x117 s3x5.7 s3x7.5 s4x7.7 s4x9.5 s5x10 s6x12.5

Reinforced Rectangular Concrete **Beam** **Design** - Bending Thickness of flange, tf Approximate Strength requirements Maximum Moment Muo at kuo=0.36 assuming a rectangular **beam** Calculations (Table 2.2.2) with kuo=0.36 Compression force in flange outstand

Rectangular Concrete **Beam** Analysis/**Design** (per ACI 318-05 Code) Rebar Data Biaxial Uniaxial Torsion Inertia Crack Control Shear Flexure(Mn) Flexure(As) Complete Analysis Doc IND1 Shape 6. In the "Uniaxial" and "Biaxial" worksheets, the CRSI "Universal Column Formulas" are used by this program

**Design** for area of steel for continuous/fixed deep **beam** - working stress **design** Per IS 456-2000 Working load on the **beam** M/(fs Z) Uncracked Section **Design**-Per IS 3370 PartII scbc sst liq-face sst away face Type of d Check for tensile stress due to bending in concrete for support moment

Notes Box Graf Bar Analysis Weight SPANS ACTIONS MAIN Pr_actions Pr_all Pr_bar Pr_main Pr_spans Pr_weight OPERATING INSTRUCTIONS Project Client Made by Date Page

**Design** ALSINGLE AXIALLOADS DATABANK DEADLOADS DYNAMIC EQPTLOADS EQPTSINGLE LIVELOADS LLSINGLE LSEC macro1 macro2 MAXIMUMAL maximumdl MAXIMUMEL MAXIMUMLL ... Location of **beam** : Except at the end of **beam** be = t = T = r = k = n = if location is at the end of **beam** Web buckling check:

6061T6 Post 6061T6 **Beam** 6063T6 Post 6063T6 **Beam** Allowables Table2002.4 **Beam** Moment Calculator Calculator Notes CrossRef Properties Roof Leeward Windward Industry Standard Shapes (Profiles)

**Beam** Extension Centerline of Pier to Centerline of Bearing Deck Transverse Bar Size Longitudinal Bar Size in ... Number of **Design** Lanes Relative Humidity LLDF **Design** Moment Skew angle of bridge bearing line Number of beams in bridge cross section

Concrete Properties Sections Table I Composite **Beam** C_Table Comp section table HSS9.625X0.500 HSS9.625X0.375 HSS9.625X0.312 HSS9.625X0.250 HSS9.625X0.188

Calculator height of the **beam** width of the **beam** cover Concrete Properties: Strength of the Steel Strength of the Concrete **Beam** Geometries: h = cov = fy =

Southern Pine Douglas Fir-Larch WOOD **BEAM** A 1.5D Kcr D+L DP2 DP1 DwL DwD+Wt Mtotal MP PD MwL MwD+Wt Dis. M ft L2 = No. 2, Southern Pine No. 1, Southern Pine Select Structural, Southern Pine

Results used in **Design** for Flexture Zones between Lateral Supports Dead Live Wind **Beam** Properties Desig-A d tw bf tf T k k1 Wt/ft bf/2tf h/tw Fy''' X1 X2x10^6 Sx rx Iy Sy ry Zx Zy J Cw nation in.2 in. lb ksi (1/ksi)^2 in.4 in.3 in in.6 W21x201-W21x182 W21x166 W21x147 W21x132 W21x122

RECTANGULAR CONCRETE **BEAM**/SECTION **DESIGN** RECTANGULAR CONCRETE **BEAM**/SECTION ANALYSIS Tie/Stirrup Spacing, s2 = s1(max) = s2(max) = Singly Reinforced Section Doubly Reinforced Section One-Way Slab Member Section **Beam** Section Typical Critical Sections for Shear

LRFD **Beam**-ColumnAnalysis Glulam ASD **Beam**-Column Analysis Glulam LRFD **Beam**-Column Analysis VGDL ASD **Beam**-Column Analysis VGDL A d Ix Sx Iy Sy Cells with calculated values

Composite **Beam** **design** Decking Slab thickness Rib direction Concrete type Concrete grade Trough depth Trough area Cover to top of troughs Lightweight Centroid to soffit N/mm2 Net slab properties Concrete densities Centroid to bottom surface Normal weight Wet Dry Dry Density kN/m3 kN/m2 Spacing

WT Rev L RW L RW RW Stair Sum Defl Bi Axial Col Slender Col Cir **Beam** 3H Arch Dome Iso F C F Seismic Stair Grid Slab Slab Typ Column Column Typ **Beam** Typ ~#temp __xlnm.Print_Titles_3

**beam**-col-**design** steel col **design** col information: section infor mation: p= kg pressure axiall load sectionname: c25 kg-cm major end moment a= major mid moment

**Beam** **Design** (including Torsion) 4.SHEAR R/f. CALCULATION 0.00 + transverse(Torsion) rft give minimum shear rft. + transverse(Torsion) rft 1.SECTION (Eq. Shear) Ve=V+1.6(T/b) 335.00 0.00 0.00 1.60 100.00 kN Width of the **beam** 30.00 cm (Eq.stress) tve=Ve/bd 1.98 1000 ...

Reinforced Concrete **Beam** **Design**. Maximum Shear Force On **Beam** = Maximum Moment On **Beam** = lbs in-lbs psi plf ft Factored Shear Force On **Beam** = Factored Moment On **Beam** = Mild Steel Reinforcement Strength = in Width In The Blue Box Please Enter A Guess For

AISC13-Ecn. Bays AISC12-Fill **Beam** AISC11-Girder(2) AISC10-Girder(1) AISC09-Joist PROJECT: STEEL BUILDING **DESIGN** CASE STUDY SUBJECT: JOIST SELECTION

Title: D-**Beam** Calculation Description: Uses ASD to check a D-**Beam** section pre & post composite Last modified by: Costanza Builders, Inc. Created Date

PCI **Beam** **Design** & Details Sheet Pile Wall Abutment Piers ("#" of Columns) Slab **Design** & Details Single/Multiple Row Pile Bents Barge Impact Analysis Steel Plate Girder **Design** & Details Decorative Handrail Details Breastwall/Stub Abutments

Sheet1 T-**BEAM** T-**BEAM** bf 1800.00 mm bf 1500.00 mm Df 250.00 mm Df 100.00 mm bw 600.00 mm bw 300.00 mm d 900.00 mm d 500.00 mm fck 20.00 N/mm^2 fck 20.00 N/mm^2 fy 415.00 N/mm^2 fy

Warren **Design** Vision's liability is limited to replacement of this software if it is found to be defective. ... where the first letter "X" indicates the type of **beam** and the second letters "YY" indicates the type of applied load. **Beam** Types S stands for Simply Supported **Beam**

**Design** **Beam** Width or Effective Slab Width (in) - b6 or EFW6 6. The **design** **beam** width equals the width of the bottom flange. For box beams topped by a concrete slab, the Effective Flange Width (EFW) is calculated below.

Enter the **Design** Moment(KNm) Enter the grade of concrete Enter the grade of steel Enter the flange width **Design** of T beams INPUT OUTPUT d (mm) Asc (mm2) Ast (mm2) by http://www.engineeringcivil.com/ Shankar Lal Tayal third year student Indian Institute of Technology Bhubaneswar

**Beam** Support 1 UDL dead 1 UDL Live 1 UDL snow 1 PU dead 1 PU live 1 PU snow 1 PU dead 2 PU live 2 PU snow 2 PL a dead 1 PL a live 1 PL a snow 1 PL b dead 1 PL b live 2 PL b snow 1 Support 2 Print Me NOTE 1: YOU HAVE TO ENABLE MACROS TO BE ABLE TO CHANGE SECTION SIZE.

T2 = **design** thickness of insulation on rated **beam** (in) D2 = heated perimeter of the rated **beam** (in) SECTIONAL FACTORS FOR STEEL BEAMS Thickness of Coating Used on the Rated Steel Column Section (X1) Weight Per Foot of the Rated Steel Column Section (W1)

Tub (U-**Beam**) 48" Fl. Tub (U-**Beam**) 72" Solid Flat Slab (36"x15") ... The process stated below is developed for estimating the bridge cost after the completion of the preliminary **design** which includes member selection, member size and member reinforcing.

**Design** of Concrete Bridges T-**Beam** Bridge **Design** Solid Slab Bridge **design** Concrete Deck **design** Example problem on: Flexure & shear strength of R.C. members Reinforced concrete constituent properties Reinforced and prestressed concrete material response

**Beam** Structural Shape W Shapes 36x300 36x280 36x260 36x245 36x230 36x210 36x194 36x182 36x170 36x160 36x150 36x135 33x241 33x221 33x201 33x152 ... The above calculations are based on principles developed in the Structural **Design** for Fire Safety by Reference: Buchanan, A. H., Structural **Design** ...

XXXXZXXX Example DSM **Beam** Calculation (job1.mat) **design** strength fMn = allowable **design** strength Mn/W = Column strength calculations using the Direct Strength Method of Appendix 1 Py = kip XXXXZXXX Example DSM Column Calculation (job1.mat) Pcrℓ/Py = Pcrd/Py = Pcre/Py =

Sheet1 Source Quick Reference Length (m) **Beam** Width, b (mm) Over-all depth, D (mm) Tributary Area (sq.m) Adjacent Slab Thickness (mm) Height of Partition above (m)

CALCULATIONS FOR **DESIGN** OF AN AIR COIL INDUCTOR Insert values for the white cells LASER **DESIGN** CALCULATOR OSC AMP1 AMP2 AMP3 AMP4 Bsize Output P/D BE P/D ns **Beam** Expander Tem00 loss Tem01 loss Data and formulas referenced from "Solid-state laser engineering" Walter Koechner. EG&G, LEOT, and ...

DOUBLE ANGLE (SLBB) SECTION **BEAM** COLUMN **DESIGN**-Material assumed to conform to ASTM A36 -Material assumed to conform to ASTM A36 BOUNDARY CONDITIONS SECTION PROPERTIES LOCAL BUCKLING MOMENT LATERAL TORSIONAL BUCKLING Based on Sx YIELDING MOMENT

Composite **beam** **design** **Design** moment capacity if full composite section is provided Composite **beam** **design**, shear connectors Number of shear stud connectors required in the composite **beam** Structural Depth Ref Manual p. 4-33 Allowable bending stress

**Design** length Midship location Length over all **Design** **beam** **Beam** over all **Design** draft Water density Displaced volume Displacement Total length of submerged body Total **beam** of submerged body Block coefficient Prismatic coefficient Wetted surface area

T-**beam** W53 Girder Bearings Ftg geometry Railing Prestress ABUT **DESIGN** LC EQ LL DL Bridge Name: Bridge No. : Input: Span ft Geometry: Width Girder width Material:

RECTANGULAR CONCRETE **BEAM** **DESIGN** = Estimiate h = 8% to 10% of the span span load Given: span= additional service load= ft. kips/ft 2 concentrated service live load= location at third points f'c= fy= psi (1.5*24+20)/24 and Estimate b = 0.5*h h b at inches DL 1.92*.96*0.15

**Design** Method **Design** Measure Floor **Beam** Present Load Rating Origination Load Distribution Factor Yes = Continue No = Stop Value Unknown, AASHTO Formula, SALOD, BRUFEM, Other Unknown, Working Stress, Load Factor, LRFD, Others HS 20/HL 93 Governing Span Length

**Beam** **design** optimization using EXCEL This example uses Excel to find the minimum weight of a cantilever **beam** which satisfies **design** requirements of strength and endpoint deflection fixed parameters adjustable parameters

**Beam** Heat Load (**design**) **Beam** Heat Load (typical) **BEAM** DUMP RAW System With Downstream LCW flow in tunnel Pump & Heat Exchanger Location In **Beam** Dump Enclosure RAW Pump Heat Load 100 HP WAG Main Injector Ring Ponds LCW Heat Load Cryoplant Heat Load