Vibration Behavior in Ceramic-Matrix Composites

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This book focuses on the vibration behavior of ceramic-matrix composites (CMCs), including (1) vibration natural frequency of intact and damaged CMCs; (2) vibration damping of CMCs considering fibers debonding and fracture; (3) temperature-dependent vibration damping of CMCs; (4) time-dependent vibration damping of CMCs; and (5) cyclic-dependent vibration damping of CMCs. Ceramic-matrix composites (CMCs) possess low material density (i.e., only 1/4 or 1/3 of high-temperature alloy) and high-temperature resistance, which can reduce cooling air and improve structure efficiency. Understanding the failure mechanisms and internal damage evolution represents an important step to ensure reliability and safety of CMCs. Relationships between microstructure, damage mechanisms, vibration natural frequency, and vibration damping of CMCs are established. This book helps the material scientists and engineering designers to understand and master the vibration behavior of CMCs at room and elevated temperatures.

Author(s): Longbiao Li
Series: Advanced Ceramics and Composites, 5
Publisher: Springer
Year: 2022

Language: English
Pages: 133
City: Singapore

Preface
Contents
1 Introduction
1.1 Application Background of Ceramic-Matrix Composites
1.2 Vibration Behavior in Ceramic-Matrix Composites
1.2.1 Vibration Natural Frequency of CMCs
1.2.2 Vibration Damping of CMCs
1.3 Summary and Conclusions
References
2 Vibration Natural Frequency of Ceramic-Matrix Composites
2.1 Introduction
2.2 Materials and Experimental Procedures
2.3 Theoretical Models
2.4 Results and Discussions
2.5 Summary and Conclusions
References
3 Vibration Damping of Ceramic-Matrix Composites Considering Fiber Debonding and Fracture
3.1 Introduction
3.2 Micromechanical Damping Models of Ceramic-Matrix Composites
3.2.1 Damping in Intact Ceramic-Matrix Composites
3.2.2 Damping in Damaged Ceramic-Matrix Composites
3.3 Result and Discussion
3.3.1 Effect of Fiber Volume on Damping of Ceramic-Matrix Composites
3.3.2 Effect of Matrix Crack Spacing on Damping of Ceramic-Matrix Composites
3.3.3 Effect of Interface Shear Stress on Damping of Ceramic-Matrix Composites
3.3.4 Effect of Interface Debonding Energy on Damping of Ceramic-Matrix Composites
3.3.5 Effect of Fiber Strength on Damping of Ceramic-Matrix Composites
3.3.6 Effect of Fiber Weibull Modulus on Damping of Ceramic-Matrix Composites
3.3.7 Comparison of Damping of Ceramic-Matrix Composites without/with Considering Fiber Failure
3.4 Experimental Comparison
3.5 Summary and Conclusion
References
4 Temperature-Dependent Vibration Damping of Ceramic-Matrix Composites
4.1 Introduction
4.2 Temperature-Dependent Micromechanical Vibration Damping Models
4.3 Results and Discussions
4.3.1 Effect of Fiber Volume on Temperature-Dependent Damping of C/SiC Composite
4.3.2 Effect of Matrix Crack Spacing on Temperature-Dependent Damping of C/SiC Composite
4.3.3 Effect of Interface Debonding Energy on Temperature-Dependent Damping of C/SiC Composite
4.3.4 Effect of Steady-State Interface Shear Stress on Temperature-Dependent Damping of C/SiC Composite
4.4 Experimental Comparisons
4.4.1 2D C/SiC
4.4.2 3D C/SiC
4.5 Discussions
4.6 Summary and Conclusions
References
5 Time-Dependent Vibration Damping of Ceramic-Matrix Composites
5.1 Introduction
5.1.1 Time-Dependent Micromechanical Vibration Damping Models
5.2 Results and Discussion
5.2.1 Effect of Fiber Volume on Time-Dependent Vibration Damping of C/SiC Composite
5.2.2 Effect of Vibration Stress on Time-Dependent Vibration Damping of C/SiC Composite
5.2.3 Effect of Matrix Crack Spacing on Time-Dependent Vibration Damping of C/SiC Composite
5.2.4 Effect of Interface Shear Stress on Time-Dependent Vibration Damping of C/SiC Composite
5.2.5 Effect of Temperature on Time-Dependent Vibration Damping of C/SiC Composite
5.3 Experimental Comparisons
5.3.1 t = 2 h at T = 700, 1000, and 1300 °C
5.3.2 t = 5 h at T = 700, 1000, and 1300 °C
5.3.3 t = 10 h at T = 700, 1000, and 1300 °C
5.4 Discussions
5.5 Summary and Conclusion
References
6 Cyclic-Dependent Vibration Damping of Ceramic-Matrix Composites
6.1 Introduction
6.2 Cyclic-Dependent Micromechanical Vibration Damping Models
6.2.1 Cyclic-Dependent Damping in Intact CMCs
6.2.2 Cyclic-Dependent Damping in Damaged CMCs
6.3 Results and Discussion
6.3.1 Effect of Fiber Volume on Cyclic-Dependent Vibration Damping of CMCs
6.3.2 Effect of Matrix Crack Spacing on Cyclic-Dependent Vibration Damping of CMCs
6.3.3 Effect of Interface Debonding Energy on Cyclic-Dependent Vibration Damping of CMCs
6.4 Experimental Comparisons
6.4.1 2D C/SiC Composite
6.4.2 3D C/SiC Composite
6.5 Discussions
6.6 Summary and Conclusion
References