Two-Dimensional Materials for Environmental Applications

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This book focuses on recent developments in the field of two-dimensional nanomaterials for environmental applications. Due to their high surface area and tunable surface chemistry, two-dimensional nanomaterials are currently garnering great interest for environmental remediation applications. This book compiles contributed chapters from active international researchers dealing with the development of state-of-the-art two-dimensional nanomaterials in environmental applications such as water and wastewater treatment, adsorption, photocatalysis, membrane separation, desalination, deionization, environmental pollutants sensing/detection, carbon-dioxide capture and catalytic conversion, microbial treatment, and electrochemical remediation. 

Each chapter provides an essential and comprehensive overview of the recent advances in material development and application, giving special attention to preparation methods, tunning of physiochemical properties, surface and interface chemistry, structural porosity, assemblies integration for fabrication of devices, and their relationship with overall efficiency. It offers a valuable reference guide for environmental and materials scientists, engineers, and policymakers working towards environmental sustainability.


Author(s): Neeraj Kumar, Rashi Gusain, Suprakas Sinha Ray
Series: Springer Series in Materials Science, 332
Publisher: Springer
Year: 2023

Language: English
Pages: 453
City: Cham

Preface
Contents
Contributors
1 MXenes: An Emerging Class of Materials for Environmental Remediation
1.1 Introduction
1.2 Structural Features of MXenes
1.3 Overview of Synthesis Methodology
1.4 Environmental Remediation Applications of MXenes
1.4.1 MXenes for Photocatalytic Pollutant Degradation
1.4.2 MXenes as Adsorbents
1.4.3 MXenes as Separation Membranes
1.4.4 MXenes for Capacitive Deionization (CDI)
1.4.5 MXenes as Electrocatalytic Sensors for Pollutant Detection
1.4.6 MXenes as Antibacterial Agents
1.5 Conclusion and Future Perspectives
References
2 Application of MXenes in Water Purification, CO2 Capture and Conversion
2.1 Introduction
2.1.1 MAX Phases as Well as MXene Synthesis
2.1.2 Traditional Synthesis Methods
2.2 Application of Mxene-Based Materials for Wastewater Pollutant Removal
2.2.1 Metals Removal from Wastewater
2.2.2 Organic Contaminants Removal from Wastewater
2.2.3 Oil/Water Separation
2.2.4 Photocatalysis
2.2.5 Removal of Radionuclides
2.3 Mxene-Based Materials Issues and Prospects in Water Remediation
2.3.1 Synthesis and Large-Scale Preparation
2.3.2 Recyclability of Adsorbent or Photocatalyst
2.3.3 Storage and Aggregation
2.3.4 Possible Mxenes Toxicity
2.3.5 Mxenes Stability
2.3.6 Development of Novel Mxene Architectures
2.3.7 Real-Life Utilization
2.4 Application of Mxene as Well as Its Materials for Carbon Dioxide (CO2) Capture but also Conversion
2.4.1 MXene-Based Materials for CO2 Capture
2.4.2 CO2 Conversion by MXene-Based Materials
2.5 Conclusion
References
3 Inorganic Analogues of Graphene and Their Nanocomposites for Wastewater Treatment
3.1 Introduction
3.2 Adsorptive Removal of Water Pollutants
3.2.1 Adsorptive Removal of Organic Dyes
3.2.2 Adsorptive Removal of Heavy Metal Ions and Oxyanions
3.2.3 Adsorptive Removal of APIs and Pesticides
3.3 Photocatalytic Degradation of Pollutants
3.3.1 Photocatalytic Degradation of Organic Dyes
3.3.2 Photocatalytic Degradation of APIs and Pesticides
3.4 Conclusion and Future Perspective
References
4 Graphitic Carbon Nitride (g-C3N4)-Based Photocatalysts for Environmental Applications
4.1 Introduction
4.2 Basic Principle of Semiconductor Based Photocatalytic Pollutant Degradation
4.3 Modification Strategies for GCN
4.3.1 Exfoliation of GCN
4.3.2 Doping in GCN
4.3.3 GCN/Semiconductor Heterojunction Construction
4.4 Environmental Remediation Through Photocatalytic Technology
4.4.1 Photocatalytic Degradation of Organic Compounds, Dyes and Antibiotics
4.4.2 Photocatalytic CO2 Conversion
4.4.3 Photocatalytic Removal of Heavy Metal Ions
4.5 Conclusion and Outlook
References
5 Antibacterial Properties of Two-Dimensional Nanomaterials
5.1 Introduction
5.2 Antibacterial Mechanisms by 2D Nanomaterials
5.2.1 Membrane Damage by Physical Contact
5.2.2 Bacterial Inactivation by Oxidative Stress
5.2.3 Light-Mediated Bactericidal Effects
5.3 Carbon-Based 2D Nanomaterials for Antibacterial Activities
5.3.1 Antibacterial Performance of GO
5.3.2 Antibacterial Properties of Graphitic Carbon Nitride
5.3.3 Antibacterial Properties of MXene
5.4 Non-carbon-Based 2D Nanomaterials for Antibacterial Activities
5.5 Challenges and Future Perspectives
References
6 Graphene-Based Photocatalysts for the Elimination of Pollutants in Water
6.1 Introduction
6.2 Basic Properties of Graphene-Based Materials
6.3 Synthesis and Properties of Graphene-Based Composites
6.4 Photocatalytic Degradation of Organic Pollutants
6.5 Summary and Future Perspective
References
7 Adsorptive Removal of Pollutants Using Graphene-based Materials for Water Purification
7.1 Introduction
7.2 History of Graphene and Its Derivatives
7.3 Various Methods for the Formulation of Graphene
7.3.1 Mechanical Exfoliation
7.3.2 Chemical Exfoliation
7.3.3 Epitaxial Growth
7.3.4 Pyrolysis
7.3.5 Unzipping Method
7.3.6 Arc Discharge Method
7.4 Graphene-Based Materials
7.4.1 Go
7.4.2 Molecular Skeleton of Single-Layer GO
7.4.3 Reduced GO
7.5 Adsorption and Its Kinetics, Isotherms, as Well as Thermodynamics
7.5.1 Adsorption Isotherms
7.6 Factors Influencing the Removal of Pharmaceuticals on GBAs
7.6.1 Surface Functional Groups
7.6.2 Effect of pH
7.6.3 Temperature Effect
7.6.4 Effect of Contact Time
7.6.5 Initial Concentration of Adsorbate
7.6.6 Effect of Different Coexisting Competing Ions
7.6.7 Effect of Agitation
7.6.8 Effect of Adsorbent Dosage
7.7 Application of GBA Materials for Water Purification
7.7.1 Exclusion of Toxic/Heavy Metals from Contaminated Water Using GO and Its Composites/Hybrids
7.7.2 Removal of Organic Contaminants Using GO/GOs-Based Composites
7.7.3 Removal of Radionuclides
7.8 Possible Rejuvenation of GBAs for Reuse
7.9 Current Challenges, Conclusion, and Prospects
7.9.1 Current Challenges
7.9.2 Conclusions
7.9.3 Prospects
References
8 Fabrication of Advanced 2D Nanomaterials Membranes for Desalination and Wastewater Treatment
8.1 Introduction
8.2 2D Materials: Their Exceptional Characteristics for Membrane Fabrication
8.2.1 Graphene-Based Materials
8.2.2 Transition Metal Dichalcogenides (MoS2)
8.2.3 MXenes
8.3 Fabrication of 2D-Enabled Membranes
8.3.1 Fabrication of Layered Membranes
8.3.2 Fabrication of Mixed Matrix (Hybrid) Membranes
8.3.3 Layer-By-Layer Self-Assembly of 2D Nanomaterials onto Membrane Surfaces
8.4 Application of 2D-Enabled Membrane Materials in Environmental Applications
8.4.1 Radionuclide Removal
8.4.2 Uranium Exclusion
8.4.3 Dyes and Other Colorants Removal
8.4.4 Removal of Heavy Metal Salts
8.4.5 2D Nanomaterial Membranes for Desalination
8.5 Conclusion
References
9 Development of 2D Nanomaterials-Based Sensors for Detection of Toxic Environmental Pollutants
9.1 Introduction
9.2 Overview of Toxic Pollutants in the Environment
9.2.1 Heavy Metals
9.2.2 Pesticides
9.2.3 Radioactive Materials
9.2.4 Dyes
9.2.5 Plastics
9.2.6 Polycyclic Aromatic Hydrocarbons (PAHs)
9.3 An Important Tool in Sensor Applications: A General Outlook of 2D Nanomaterials
9.4 2D Nanomaterials-Based Sensor Applications for Detection of Environmental Pollutants
9.4.1 Optical
9.4.2 Electrochemical Applications
9.5 Conclusion and Future Prospects
References
10 2D Nanomaterial Photoelectrodes for Photoelectrochemical Degradation of Pollutants and Hydrogen Generation
10.1 Introduction
10.2 Wastewater Characteristics
10.3 Photoelectrocatalysis Mechanism
10.4 Nanomaterials as Photoelectrocatalyst
10.4.1 Factors Affecting the PEC Efficiency of 2D Nanomaterials
10.4.2 Synthesis Methods for 2D Photoelectrodes
10.5 2D Nanomaterials in a Dual PEC System
10.5.1 Metal Oxide Semiconductors
10.5.2 Transitional Metal Dichalcogenides
10.5.3 Graphene and Graphene like Materials
10.5.4 MXenes
10.6 Conclusions and Future Prospective
References
11 Advances in 2D MOFs for Environmental Applications
11.1 Introduction
11.2 Overview of 2D MOF Materials
11.3 Fabrication and Electrocatalytic Properties of 2D MOFs
11.3.1 Top-Down Approach
11.3.2 Bottom-Up Approach
11.3.3 Electrocatalytic Properties
11.4 Effective Strategies for Modification of MOFs
11.5 2D MOFS-Based Sensor for Environmental Applications
11.6 Conclusion and Perspectives
References
12 Applications of MoS2 Nanostructures in Wastewater Treatment
12.1 Introduction
12.2 Application of MoS2 in Wastewater Treatment
12.2.1 Adsorption
12.2.2 Photocatalysis
12.2.3 Membrane Filtration
12.2.4 Antibacterial Activity
12.3 Outlook and Future Perspectives
References
13 Two-Dimensional All-Metal/Metal Oxide Based Photocatalysts for Solar CO2 Conversion
13.1 Introduction
13.2 Multidimensional Interfaces of 2D Metal Oxides for Enhanced CO2 Conversion
13.2.1 Pure and Heteroatom Doped 2D Metal Oxides Photocatalysts
13.2.2 Heterojunction 0D-2D Metal Oxides Photocatalysts
13.2.3 Heterojunction 1D-2D Metal Oxides Photocatalysts
13.2.4 Heterojunction 2D-2D Metal Oxides Photocatalysts
13.2.5 Heterojunction 2D-3D Metal Oxides Photocatalysts
13.3 Conclusion
References
14 Nano-engineered 2D Materials for CO2 Capture
14.1 Introduction
14.2 CO2: Sources and Hazardous Effect
14.3 Mechanism of Carbon Dioxide Capture
14.4 Capture of CO2 Using Nano-engineered 2D Materials
14.4.1 Graphene and Graphene-Based Nanomaterials
14.4.2 2D Transition Metal Oxide-Based Nanomaterials
14.4.3 MXenes
14.4.4 Hexagonal Boron Nitride (h-BN)
14.4.5 Transition Metal Dichalcogenides
14.4.6 Carbon Nitride
14.4.7 2D Metal–Organic Frameworks
14.4.8 Other 2D Materials
14.5 Conclusion and Future Directions
References