Trends in Industrial Engineering Applications to Manufacturing Process

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This book covers supply chain and logistics, production and manufacturing systems as well as human factors. Topics such as applications to procurements from suppliers, suppliers developments and relationships with suppliers are reported. The techniques and tools applied to production processes, such as, machinery maintenance and quick changeover, are described in detail. The book also presents human factors as the main component in the industrial engineering field, reporting some successful teamwork organizations for improvements and applied ergonomics, among others. 

Author(s): Jorge Luis García-Alcaraz, Arturo Realyvásquez-Vargas, Emigdio Z-Flores
Publisher: Springer
Year: 2021

Language: English
Pages: 603
City: Cham

Preface
Acknowledgements
Contents
Editors and Contributors
List of Figures
List of Tables
Part I Supply Chain and Logistics
1 A Conceptual Framework of Green Supply Chain Management: Influential Factors, Green Practices, and Performance
1.1 Introduction
1.2 Research Methodology
1.2.1 Bibliometric Analysis: GSCM Trends
1.3 The Proposed Conceptual Framework
1.3.1 Influential Factors
1.3.2 GSCM Practices
1.3.3 Sustainable Performance
1.4 Conclusions
References
2 Arcs of Integration: Methodological and Statistical Analysis
2.1 Introduction
2.2 Methodological Analysis of Arcs of Integration
2.2.1 External Integration
2.2.2 Internal Integration
2.3 Statistical Analysis of the Methodology of Arcs of Integration
2.4 Conclusions
References
3 A Proposal to Redesign the Distribution Networks of Steel Manufacturing and Distribution Companies
3.1 Introduction
3.2 Literature Review
3.2.1 Operations Research as a Tool for Improvement
3.2.2 Machine Learning as a Tool for the Management of Data and Information
3.3 Methodology and Methods
3.3.1 The Model Formulation
3.3.2 Define the Sets, Variables, and Parameters
3.3.3 Formulate the Model
3.3.4 Results
3.4 Conclusions
References
4 Layout Planning Approach at a Plumbing Department in a Manufacturing Industry: A Case Study
4.1 Introduction
4.2 Background
4.2.1 Layout Planning
4.2.2 Lean Manufacturing
4.2.3 Kanban as a Visual Tool
4.2.4 Kaizen as Continuous Improvement
4.2.5 Systematic Layout Planning (SLP)
4.3 Methodology
4.3.1 Phase I: Localization
4.3.2 Phase II. General Distribution Plan
4.3.3 Phase III. Detailed Distribution Plan
4.3.4 Phase IV. Installation
4.4 Results
4.5 Conclusions and Recommendations
4.6 Discussion
References
5 Improving Distribution Process Using Lean Manufacturing and Simulation: A Seafood Packer Company Case
5.1 Introduction
5.1.1 Context and Research Problem
5.2 Materials and Methods
5.2.1 Stage 1: Description of the Processes
5.2.2 Stage 2: Develop and Analysis of Value Stream Mapping
5.2.3 Stage 3: Solution Classification for the System
5.2.4 Stage 4: Develop of Simulation Model
5.2.5 Stage 5: Analysis of the Scenarios
5.2.6 Stage 6: Implementation and Validation of the Improvement
5.3 Results
5.3.1 Stage 1: Description of the Process
5.3.2 Stage 2: Develop and Analysis of Value Stream Mapping
5.3.3 Stage 3: Solution Classification for the System
5.3.4 Stage 4: Develop of the Simulation Model
5.3.5 Stage 5: Simulation Model
5.3.6 Stage 6: Analysis of the Scenarios
5.3.7 Stage 7: Implementation and Validation of the Improvement
5.4 Discussion
5.5 Conclusions
References
6 Effect of Advanced Manufacturing Technology on Responsive Supply Chain Strategy, Pull System and Responsiveness to Market
6.1 Introduction
6.2 Literature Review and Hypotheses
6.2.1 Advanced Manufacturing Technology (AMT)
6.2.2 Responsive Supply Chain Strategy (RSCS)
6.2.3 Pull System (PS)
6.2.4 Responsiveness to Market (RtM)
6.3 Methodology
6.3.1 Step 1. Survey Development
6.3.2 Step 2. Administration of the Questionnaire
6.3.3 Step 3. Data Screening
6.3.4 Step 4. Validation of the Questionnaire
6.3.5 Step 5. Structural Equation Model (SEM)
6.3.6 Sensitivity Analysis
6.4 Results
6.4.1 Sasmple Desription
6.4.2 Latent Variables Validation
6.4.3 Structural Equation Modeling
6.4.4 Sensitivity Analysis
6.5 Conclusions and Industrial Implications
References
7 Effect of Variability on the Optimal Flow of Goods in Supply Chains Using the Factory Physics Approach
7.1 Introduction
7.2 Literature Review and Concepts
7.2.1 Minimum Cost Flow
7.2.2 Queueing Concepts
7.2.3 Flow in an Open Queueing Network
7.2.4 Probability and Variability
7.2.5 Approximation of Flow Variability in a Queueing Network
7.2.6 Approximation of the Cycle Time
7.3 Case Study: Analysis of the Supply Chain
7.3.1 Modeling of the Solution as a Queueing System
7.3.2 Analysis of the Flow in the Supply Chain Under the Effect of Variability
7.4 Conclusions
References
8 Mathematical Approach for Street Markets Location in Food Desert Regions: A Case Study in Valparaíso Chile Region
8.1 Introduction
8.2 Background
8.2.1 Street Markets
8.2.2 Facility Location Problem
8.3 Proposal
8.3.1 Problem Description
8.3.2 Street Markets Facility Location MILP Model
8.4 Case Study
8.4.1 Data Collection and Preparation
8.5 Results
8.6 Conclusions and Future Work
References
9 Optimization of Supply Management in a Fishing Sector Company
9.1 Introduction
9.2 Literature Review
9.3 Methodology
9.3.1 Step 1. Organizational Assessment
9.3.2 Step 2. Critical Processes Identification
9.3.3 Step 2. Elaborate the Functional Strategic Map
9.4 Results
9.5 Discussion
9.6 Conclusions and Recommendations
References
10 Decision Support Model for Solid Waste Management in a Closed-Loop Supply Chain
10.1 Introduction
10.2 Literature Review
10.2.1 Solid Waste Management
10.2.2 Reverse Supply Chain
10.2.3 Closed-Loop Supply Chains
10.2.4 Multi-criteria Techniques in Waste Management
10.3 Methodology
10.4 Results
10.4.1 Criteria and Subcriteria
10.4.2 Alternatives for Waste Management in a CLSC Glass Containers
10.4.3 Hierarchical Structure for Decision in the Manufacturer Link
10.4.4 Prioritization of Criteria and Subcriteria
10.4.5 Alternative Preferences
10.4.6 Sensitivity Analysis of the Decision-Making Model for the Manufacturer Link
10.5 Conclusions
References
Part II Manufacturing and Quality
11 Manufacturing Execution System State-Of-The-Art: Its Evolution and Dynamism Focused on Industry 4.0
11.1 Introduction
11.2 Methodology
11.3 Literature Review
11.3.1 Background of Manufacturing Execution Systems
11.3.2 Manufacturing Execution Systems Evolution
11.3.3 Manufacturing Execution Systems in the Normative Setting
11.3.4 Manufacturing Execution Systems Taxonomy
11.3.5 Manufacturing Execution Systems as a Quality Tool
11.3.6 Manufacturing Execution Systems and Industry 4.0
11.4 Conclusions and Industrial Implications
References
12 Enablers and Barriers for a Quality Management System Implementation in Mexico: An Exploratory Analysis
12.1 Introduction
12.1.1 A Brief History of the International Standardization Organization and ISO 9001 Standard
12.2 The ISO 9001 Standard
12.2.1 History and Follow up of the ISO 9001 Standard
12.2.2 Standardization Process of ISO 9001 Standard
12.2.3 The ISO 9001:2015 Standard
12.2.4 Structural Standards of the ISO 9000 Family
12.2.5 Quality Standards Based on the ISO 9001 Standard
12.3 Critical Success Factors for ISO 9001 Standard Implementation
12.4 The ISO 9001 Standard Implementation in Mexican Companies
12.4.1 Methodology
12.4.2 Results
12.5 Discussion
12.6 Conclusions
References
13 Gestation of the Genetics of a Company
13.1 Introduction
13.1.1 Genetic Information of an Organization
13.2 The Purpose
13.3 Mission
13.4 Functions
13.5 Policy
13.6 Vision
13.7 Culture
13.8 Conclusions
References
14 Work Engagement as Result of Leadership and Employer Branding: A Case of a Mexican Manufacturing Plant
14.1 Introduction
14.2 Literature Review and Hypotheses Statement
14.2.1 Work Engagement
14.2.2 Employer Branding
14.2.3 Servant Leadership
14.3 Methodology
14.3.1 Sample
14.3.2 Measures and Descriptive Analysis of the Items
14.4 Results
14.4.1 Validity of the Scales
14.4.2 Structural Equation Modeling
14.4.3 Corroboration of Hypothesis
14.5 Conclusions and Practical Implications
References
15 The DMAIC Methodology as a Tool for Process Improvement: The Case of a Mexican Manufacturing Company
15.1 Introduction
15.2 The DMAIC Methodology
15.2.1 DMAIC Techniques and Tools
15.3 Research Problem and Goal
15.4 Methodology
15.4.1 Phase 1. Define
15.4.2 Phase 2. Measure
15.4.3 Phase 3. Analyze
15.4.4 Phase 4. Improve
15.4.5 Phase 5. Control
15.5 Results
15.5.1 Phase 1 Results: Define
15.5.2 Phase 2 Results: Measure
15.5.3 Phase 3 Results: Analyze
15.5.4 Phase 4 Results: Improve
15.5.5 Phase 5 Results: Control
15.6 Conclusions and Recommendations
References
16 Adaptability of the Lean-Sigma Methodology for Operations in a Multicultural Workplace
16.1 Introduction
16.2 Project Preparation
16.2.1 Set of Tools for the Case Study
16.2.2 Adapting a Methodology
16.3 Integration into a Lean-Sigma Project
16.3.1 Using the Adopted Methodology in the Case Study
16.3.2 Case Description
16.3.3 Implementation Plan
16.3.4 Identify and Measure the Problem Step
16.3.5 Root Cause Analysis Step
16.3.6 Develop a Solution Step
16.3.7 Verify the Solution
16.3.8 Control Plan
16.4 Conclusions
References
17 Using Simulation for Facility Layout Problems: A Case Study of an Ecuadorian Handcraft Chocolate Company
17.1 Introduction
17.2 Literature Review
17.2.1 Facilities Planning Problems
17.2.2 Workshop Characteristics Impacting Layout
17.2.3 Material Handling System
17.2.4 Resolution Approaches
17.3 Methodology
17.3.1 Define the Objectives and Scope of the Material Handling System
17.3.2 Analyze the Requirements to Move, Store, Protect and Control Materials
17.3.3 Generate Material Handling Design Alternatives that Meet the Process Requirements
17.3.4 Evaluate Material Handling Design Alternatives
17.3.5 Select the Most Convenient Design to Move, Store, Protect, and Control Materials
17.4 Results
17.4.1 Case Study
17.4.2 Restrictions
17.4.3 Objectives and Scope of the Material Handling System
17.4.4 Requirements to Move, Store, Protect and Control Materials
17.4.5 Generation of Design Alternatives
17.4.6 Evaluation of Design Alternatives
17.4.7 Select the Most Convenient Design
17.5 Conclusions, Limitations and Recommendations
Appendix 17.1: Chocolate Production Process Flowchart
Appendix 17.2: Current Facility Layout
Appendix 17.3: Available Space
Appendix 17.4: Scenario No. 1 Flow Matrix
Appendix 17.5: Scenario No. 2 Flow Matrix
Appendix 17.6: Scenario No. 3 Flow Matrix
Appendix 17.7: Equipment Capacity
Appendix 17.8: Area Requirements for Each Scenario
Appendix 17.9: AMPL IDE Solution for Scenario No. 1
Appendix 17.10: AMPL IDE Solution for Scenario No. 2
Appendix 17.11: AMPL IDE Solution for Scenario No. 3
Appendix 17.12: Statistical Distribution for Each Production Process
Appendix 17.13: Pilot Test Results
Appendix 17.14: Power Curve
Appendix 17.15: Simulation Results for Alternative 1
Appendix 17.16: Simulation Results for Alternative 2
Appendix 17.17: Cacao Company AutoCAD Layout
Appendix 17.18: Cacao Company 3D Model Top View
Appendix 17.19: Cacao Company 3D Model Side View
References
18 A Framework for the Formulation of an Operations Strategy in Manufacturing Systems
18.1 Introduction
18.2 Proposed Framework
18.2.1 Framework Description
18.2.2 Framework Validation Strategy
18.3 Results
18.3.1 Strategy Formulation
18.3.2 Framework Validation
18.4 Discussion and Further Research
18.5 Conclusions
Appendix: Project Effects (Example with Two Projects)
References
Part III Human Factors and Ergonomics
19 The Human Factor as a Central Element in the Design of the Workplace. A Systematic Review
19.1 Introduction
19.2 Literature Review
19.2.1 Manufacturing Process and Workplace Design
19.2.2 Effects of Workplace Design on Workers’ Well-Being
19.2.3 Current Approaches to Workplace Design
19.3 New Trends in Manufacturing Workplace Design
19.3.1 Review Methodology
19.3.2 New Trends
19.4 Conclusion
19.4.1 Discussion
19.4.2 Conclusion
References
20 Ergonomic Study of Construction Workers in Odisha (India): A Case Study in Construction Sites
20.1 Introduction
20.2 Literature Review
20.2.1 Analytical Methods for Ergonomic Analysis
20.3 Research Methodology
20.3.1 Materials and Methods
20.3.2 Ergonomic Risk Assessment
20.4 Results
20.5 Discussion
20.6 Conclusions and Recommendations
References
21 Are Productivity and Quality in Electronics Manufacturing Industry Affected by Human Factors? A Quantitative Analysis Using Statistical Tools
21.1 Introduction
21.2 Literature Review
21.2.1 Human Error in Manufacturing
21.2.2 Importance of Process Design in Productivity and Quality
21.2.3 Automation and Process Design
21.2.4 Work Design Through Socio-Technical Systems
21.3 Methodology
21.3.1 Stage 1: Analysis of Correlation Between the Level of Rejected Lots and Worker Seniority
21.3.2 Stage 2: Identification of Psychological Profiles
21.3.3 Stage 3: Design of Experiments
21.3.4 Stage 4: Analysis of Case Study
21.3.5 Stage 5: Proposals of Cognitive Ergonomics Approach
21.4 Results and Discussion
21.4.1 Analysis of Correlation Between the Level of Rejected Lots and Worker Seniority
21.4.2 Identification of Psychological Profiles
21.4.3 Design of Experiments Results
21.4.4 Further Analysis of Human Factors
21.4.5 Proposed Framework for Designing Work Methods that Incorporate the Human Factor
21.5 Conclusions
21.5.1 Key Points
References
Index