Topological Polymer Chemistry: Concepts and Practices

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This book provides a comprehensive description of topological polymers, an emerging research area in polymer science and polymer materials engineering. The precision polymer topology designing is critical to realizing the unique polymer properties and functions leading to their eventual applications. The prominent contributors are led by Principal Editor Yasuyuki Tezuka and Co-Editor Tetsuo Deguchi. Important ongoing achievements and anticipated breakthroughs in topological polymers are presented with an emphasis on the spectacular diversification of polymer constructions. 

The book serves readers collectively to acquire comprehensive insights over exciting innovations ongoing in topological polymer chemistry, encompassing topological geometry analysis, classification, physical characterization by simulation and the eventual chemical syntheses, with the supplementary focus on the polymer folding, invoked with the ongoing breakthrough of the precision AI prediction of protein folding.  The current revolutionary developments in synthetic approaches specifically for single cyclic (ring) polymers and the topology-directed properties/functions uncovered thereby are outlined as a showcase example. 

This book is especially beneficial to academic personnel in universities and to researchers working in relevant institutions and companies. Although the level of the book is advanced, it can serve as a good reference book for graduate students and postdocs as a source of valuable knowledge of cutting-edge topics and progress in polymer chemistry.


Author(s): Yasuyuki Tezuka, Tetsuo Deguchi
Publisher: Springer
Year: 2022

Language: English
Pages: 429
City: Singapore

Preface
Contents
1 Introductory Remarks
References
Part I Theories and Practices of Multicyclic and Topological Polymers
2 Graph Theoretical and Knot Theoretical Analyses of Multi-cyclic Polymers
2.1 Topology of polymers
2.2 Graph Theoretical Analyses Of polymers
2.2.1 Graphs
2.2.2 Nomenclature
2.2.3 Folding Construction of Graphs (Polymers)
2.2.4 Types of Graphs (Polymers)
2.3 Knot Theoretical Analyses Of polymers
2.3.1 Knots, Links, And spatial Graphs
2.3.2 Topological Isomers
2.3.3 Topological Chirality
2.3.4 Rigid Vertex Versus Non-rigid Vertex
2.4 Summary and Perspective
References
3 Classification, Notation and Isomerism of Topological Polymers
3.1 Classification of Polymer Substances by Their Topologies
3.2 Classification of Acyclic and Monocyclic Polymer Topologies
3.3 Classification of Dicyclic Polymer Topologies
3.4 Tri-, Tetra- and Pentacyclic Polymer Topologies
3.5 Topological Insights into Polymeric Constitutional Isomers
3.6 Topological Insights into Polymeric Stereoisomers
References
4 Exact Evaluation of the Mean Square Radius of Gyration for Gaussian Topological Polymer Chains
4.1 Introduction
4.2 Elements of Graph Theory
4.2.1 Boundary Matrix
4.2.2 The Space of Paths
4.2.3 Singular Value Decomposition of Boundary Matrix B
4.3 Graph Embeddings
4.3.1 Direct Sum Decomposition of the Space of Paths
4.3.2 Centered Conformations
4.3.3 Diagonalization of the Graph Laplacian in Terms of Eigenmodes
4.3.4 Mean Square Radius of Gyration
4.4 Exact Dependence of the Mean Square Radius of Gyration on Polymerization Degree
4.4.1 Subdivision
4.4.2 Resistance Distances in Electrical Circuits
4.4.3 Derivation of an Exact Formula for the n-subdivided Theta Graph
4.4.4 Exact Expressions of the Mean Square Radius of Gyration for the n-subdivided Complete Graphs
4.5 Asymptotic Value of the Mean Square Radius of Gyration for an Arbitrary Complete Graph
4.6 Perspectives on Gaussian Networks
4.7 Concluding Remarks
References
5 Fundamentals of the Theory of Chromatography of Topologically Constrained Random Walk Polymers
5.1 Introduction
5.2 Basic Model and Equations
5.3 Unified Approach for Calculating the Partition Coefficient of an Arbitrary TCRW Polymer
5.3.1 Generalized Model and Common Parameters for a Complex TCRW Polymer Interacting with Walls of a Slit-Like Pore
5.3.2 Graph Representation of a Complex Macromolecule
5.3.3 Partition Coefficient
5.3.4 A Theoretical Chromatograph
5.4 Theory in Chromatographic Applications
5.4.1 Chromatographic Separation of Linear and Ring Polymers
5.4.2 More Complex Topological Polymers
5.4.3 Simulating Chromatographic Separations of Heterogeneous Topological Polymers and Copolymers
5.4.4 Comparison of Theory and Experiment
5.5 Concluding Remarks and Prospects for Further Development of the Theory of Chromatography of Topologically Complex Polymers
Appendix
References
6 Construction of Multicyclic Polymer Topologies through Electrostatic Self-assembly and Covalent Fixation (ESA-CF)
6.1 Introduction
6.2 Electrostatic Self-assembly and Covalent Fixation by Telechelic Polymers
6.3 Preparation of kyklo-Telechelics by the ESA-CF Protocol
6.4 Construction of fused-Multicyclic Polymer Topologies
6.5 Construction of spiro-, bridged-, and hybrid-Multicyclic Polymer Constructions
6.6 Future Perspectives on the Construction of Complex Polymer Topologies
References
Part II Theories and Practices of Polymer Folding Topologies
7 Topological Analysis of Folded Linear Molecular Chains
7.1 Circuit Topology of Folded Chains
7.1.1 Principles of Circuit Topology
7.1.2 Topology Rules and Their Inference
7.1.3 Coding Circuit Topology
7.2 Generalized Circuit Topology
7.2.1 Entanglement Expressed via Soft Contacts
7.2.2 Beyond Soft Contacts: Completeness of Generalized Circuit Topology
7.2.3 Circuit Topology and Knot Theory
7.2.4 Circuit Topology and Network Topology
References
8 DNA Knots
8.1 Introduction
8.2 Spontaneous Knotting of DNA in Solution
8.2.1 Experimental Results
8.2.2 Theoretical Modelling and Interpretation
8.3 Native Knotting of Genomic DNA
8.3.1 Viral DNA
8.3.2 Theoretical Modelling and Interpretation
8.3.3 Bacterial DNA
8.3.4 Eukaryotic DNA
8.4 RNA (un)Knotting
8.5 Conclusions
References
9 Cyclotides—Cyclic and Disulfide-Knotted Polypeptides
9.1 Introduction
9.2 Biosynthesis
9.3 Cyclotides
9.4 Topology
9.5 Concluding Remarks and Outlook
References
10 Construction of a Macromolecular K3,3 Graph Topology by the ESA-CF Polymer Folding
10.1 Introduction
10.2 Preparation of a Dendritic Precursor for the Construction of a K3,3 Graph Topology
10.3 Constructing a Macromolecular K3,3 Graph by the ESA-CF Protocol
10.4 Perspectives Toward Elusive Polymer Topologies
References
11 Programmed Polymer Folding
11.1 Introduction
11.2 Topology and Folding Landscape
11.3 Guided Folding and Folding Catalysts
11.4 Bond and Backbone Chemistry
11.4.1 Designing New Proteins
11.4.2 Designing DNA-Based Folded and Knotted Chains
11.4.3 Folded Single-Chain Polymers of Non-biological Origin
11.4.4 Enzyme Inspired Design of Polymeric Catalysts
11.4.5 Optically Controlled Folding Polymers
11.5 Purification and Characterization
11.6 Concluding Remarks and Outlooks
References
12 Spatially and Chemically Programmed Polymer Folding by the ESA-CF Protocol
12.1 Programmed Polymer Folding
12.2 A Pair of Telechelic Precursors for the Programmed Polymer Folding
12.3 The Programmed Polymer Folding of Telechelic Precursors Having Periodic Nodal Units
12.4 SEC Deconvolution Analysis of the Polymer Folding Products from the Linear Precursor Having Periodic Nodal Units
References
13 Macromolecular Rotaxanes, Catenanes and Knots
13.1 Introduction
13.2 Polyrotaxanes and Polypseudorotaxanes
13.2.1 Cyclodextrin-Based Polyrotaxanes and Pseudorotaxanes
13.2.2 Crown Ether-Based Polyrotaxanes and Polypseudorotaxanes
13.2.3 Polyrotaxanes and Polypseudorotaxanes Based on Other Macrocycles
13.3 Polymeric Knots or Knotted Polymers
13.4 Polycatenanes
13.5 Summary and Prospectus
References
Part III Cyclic Polymer Innovations: Syntheses
14 Recent Progress on the Synthesis of Cyclic Polymers
14.1 Introduction
14.2 Bimolecular Ring-Closure
14.3 Unimolecular Ring-Closure
14.4 Homodifunctional Ring-Closure
14.5 Heterodifunctional
14.6 Ring-Expansion Polymerization
14.7 Ring-Expansion Polymerization of Lactones
14.8 Ring-Expansion Metathesis Polymerization
14.9 Zwitterionic Ring-Opening Polymerization
14.9.1 Nitroxide-Mediated Radical Polymerization
14.9.2 Thermally Induced Radical Ring-Expansion Polymerization
14.9.3 Ring-Expansion Polymerization of Thiiranes
14.9.4 Catenanes and Knotted Polymers via the Ring-Expansion Polymerization of Lactones
14.9.5 Conclusion
References
15 Recent Progress on the Synthesis of Cyclic Polymers via Ring-Closure Methods
15.1 Introduction
15.2 Unimolecular Ring-Closure Strategy
15.2.1 Unimolecular Ring-Closure Strategy Based on Non-irradiated Click Chemistry
15.2.2 Unimolecular Ring-Closure Strategy Based on Photo-Induced Click Chemistry
15.3 Bimolecular Ring-Closure Strategy Based on Self-accelerating Click Chemistry
15.4 Conclusions
References
16 Ring-Expansion Polymerization of Cycloalkenes and Linear Alkynes by Transition Metal Catalysts
16.1 Introduction
16.1.1 Background
16.1.2 Cyclic Polymer Synthesis
16.1.3 Ring-Expansion Polymerization (REP)
16.2 Ring-Expansion Metathesis Polymerization (REMP)
16.2.1 Ruthenium Catalysts for REMP
16.2.2 Tungsten Catalysts for Ring-Expansion Metathesis Polymerization
16.3 Conclusion
References
17 Synthesis of Cyclic Vinyl Polymers via N-Heterocyclic Carbene (NHC)-Initiated Anionic Polymerization and Subsequent Ring-Closure Without Highly Dilute Conditions
17.1 Research Background in Synthesis of Cyclic Polymers via Chain Polymerization
17.2 NHC-Initiated Anionic Polymerization of Alkyl Sorbate in the Presence of Bulky Lewis Acid and Subsequent Ring-Closure Without Highly Dilution
17.3 Expansion of Range of Acceptable Vinyl Monomers
17.4 Direct Observation of Cyclic Structures
References
18 Controlled Ring-Expansion Polymerization Based on Acyl-Transfer Polymerization of Thiiranes with Aromatic Heterocycles as Initiators
18.1 Introduction
18.2 Ring-Opening Reaction of Thiiranes with Active Ester Groups Catalyzed by Quaternary Onium Halides
18.3 Acyl-Transfer Polymerization of Thiiranes
18.4 Ring-Expansion Acyl-Transfer Polymerization of Thiiranes with Cyclic Initiators
18.4.1 Ring-Expansion Polymerization of Thiiranes with Cyclic Aromatic Thiourethane Initiator: The Polymerization Properties
18.4.2 Ring-Expansion Polymerization of Thiiranes with Cyclic Aromatic Dithiocarbamate Initiator: Comparison of Acyl-Transfer and Thioacyl-Transfer Polymerization
18.4.3 Post-polymerization and Block Copolymerization Based on Cyclic Aromatic (Di)thiocarbamates-Initiated Polysulfides as Macro-initiators
18.4.4 Glass Transition Properties of BT-Initiated Cyclic Polysulfides with Well-Defined Cyclic Topology
References
19 A Conjunctive RC and RE Polymer Cyclization with Zwitterionic Telechelic Precursors
19.1 Introduction
19.2 Telechelic Poly(THF)s Having a Pair of a Cyclic Ammonium and a Carboxylate Groups for Unimolecular ESA-CF Polymer Cyclization
19.3 Unimolecular Polymer Cyclization with Telechelic Poly(THF)s Having a Pair of a Cyclic Ammonium and a Carboxylate Groups
19.4 Perspectives of Unimolecular Polymer Cyclization with Zwitterionic Telechelic Precursors
References
20 Cyclic Polymers Synthesized by Spontaneous Selective Cyclization Approaches
20.1 General Approaches for Synthesizing Cyclic Polymers
20.2 Unique Approaches for Synthesizing Cyclic Polymers via Spontaneous Selective Cyclization Approaches
20.3 Synthesis of Cyclic Polymers via DCC: Using Ring/Chain Equilibria
20.4 Synthesis of Cyclic Polymers via DCC: Using REP
20.5 Synthesis of Cyclic Polymers via Rotaxane Chemistry
20.6 Foresight
References
21 Unstoichiometric Polycondensation for the Synthesis of Aromatic Cyclic Polymers
21.1 Introduction
21.2 Cyclic Polymer from Conventional Polycondensation
21.3 Cyclic Polymer from Unstoichiometric Polycondensation
21.3.1 Background and Discovery
21.3.2 Cyclic Polyphenylenes
21.3.3 Extensively Conjugated Cyclic Polyarylenes
21.3.4 Cyclic Polyheteroarylenes
21.4 Conclusion
References
Part IV Cyclic Polymer Innovations: Topology Effects
22 Entanglement in Solution of Non-concatenated Rings
22.1 Introduction
22.2 Brief Reminder on Ring Conformation
22.2.1 Size Scaling
22.2.2 Topological Volume
22.3 Entanglement
22.4 Dynamical Entanglement Analysis
22.4.1 Displacement Correlation
22.4.2 Vector Field Representation
22.4.3 Spatial-Temporal Entanglement Structure
22.4.4 Mean Field Picture
22.5 Outlooks
References
23 Dilute Solution Properties of Ring Polymers
23.1 Gaussian Ring
23.2 Wormlike Ring
23.3 Analyses of Experimental Data
References
24 Cyclic Polymers for Innovative Functional Materials
24.1 Introduction
24.2 Amphiphilicity and Self-assembly
24.3 Reversible Topological Transformations
24.4 All π-Conjugated Cyclic Polymers
24.5 Stabilization of Gold Nanoparticles
24.6 Conclusions
References
25 Surface Functionalization with Cyclic Polymers
25.1 Introduction
25.2 Cyclic Polymers on Macroscopic Surfaces
25.3 Cyclic Polymer Shells on Nanoparticles
25.4 Conclusions
References
26 Morphological Significances of Cyclic Polymers in Solution and Solid State
26.1 Introduction
26.2 Morphology of Cyclic Polymers in Solution
26.3 Morphology of Cyclic Polymers in Bulk State
26.4 Morphology of Cyclic Polymers in Thin Films
26.5 Concluding Remarks
References
27 Transforming Cyclic/Linear Polymer Topologies: Emerging Techniques and Opportunities
27.1 Introduction
27.2 Reaction Design for Topological Transformation
27.2.1 Reversible Cycloaddition Reaction
27.2.2 Cyclization by Stable Radicals
27.3 Linear–Cyclic Topological Transformations Based on Cycloaddition Reactions
27.4 Linear–Cyclic Topological Transformations Based on Radical Reactions
27.5 Creation of Dynamic Functions Based on Topological Transformations
27.5.1 Development of Polymers that Control Viscoelasticity with Recombination of Network–Star–8-Shaped Topology
27.5.2 Development of Silicone Materials with Physical Properties Changed by Recombination of Cyclic–Linear Topology
References