Titanium Dioxide (TiO2) and Its Applications

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Scientific interest in TiO2-based materials has exponentially grown in the last few decades. Titanium Dioxide (TiO2) and Its Applications introduces the main physicochemical properties of TiO2 which are the basis of its applications in various fields. While the basic principles of the TiO2 properties have been the subject of various previous publications, this book is mainly devoted to TiO2 applications.

The book includes contributions written by experts from a wide range of disciplines in order to address titanium dioxide's utilization in energy, consumer, materials, devices, and catalytic applications. The various applications identified include: photocatalysis, catalysis, optics, electronics, energy storage and production, ceramics, pigments, cosmetics, sensors, and heat transfer.

Titanium Dioxide (TiO2) and Its Applications is suitable for a wide readership in the disciplines of materials science, chemistry, and engineering in both academia and industry.

Author(s): Francesco Parrino, Leonardo Palmisano
Series: Metal Oxides
Publisher: Elsevier
Year: 2020

Language: English
Pages: 730
City: Amsterdam

Title-page_2021_Titanium-Dioxide--Tio---and-Its-Applications
Titanium Dioxide (TiO2) and Its Applications
Copyright_2021_Titanium-Dioxide--Tio---and-Its-Applications
Copyright
Contents_2021_Titanium-Dioxide--Tio---and-Its-Applications
Contents
List-of-contributors_2021_Titanium-Dioxide--Tio---and-Its-Applications
List of contributors
About-the-series-editor_2021_Titanium-Dioxide--Tio---and-Its-Applications
About the series editor
About-the-editors_2021_Titanium-Dioxide--Tio---and-Its-Applications
About the editors
Preface-to-the-series_2021_Titanium-Dioxide--Tio---and-Its-Applications
Preface to the series
Preface-to-the-volume_2021_Titanium-Dioxide--Tio---and-Its-Applications
Preface to the volume
1---Introduction_2021_Titanium-Dioxide--Tio---and-Its-Applications
1 Introduction
1.1 Economic aspects
1.2 Summary of the book
References
2---Properties-of-titanium-diox_2021_Titanium-Dioxide--Tio---and-Its-Applica
2 Properties of titanium dioxide
2.1 Introduction
2.2 Structural properties
2.2.1 Structures of TiO2
2.2.2 Main techniques used for TiO2 structural analysis
2.3 Structure and defects
2.3.1 Defectivity
2.3.1.1 Point defects
2.3.1.2 Line defects
2.3.1.3 Interfacial defects
2.3.1.4 Bulk defects
2.3.2 Surface defectivity
2.3.2.1 O vacancies
2.3.2.2 Ti defects
2.3.2.3 H defects
2.3.3 Surface and lattice distortion
2.4 TiO2 morphologies
2.5 Thermodynamic properties
2.6 Electronic properties
2.7 Electrical properties
2.8 Optical properties
2.9 Photon-induced behavior
2.10 Mechanical and rheological properties
2.10.1 Mechanical properties
2.10.2 Rheological properties
References
3---Structural-and-electronic-properties-of-Ti_2021_Titanium-Dioxide--Tio---
3 Structural and electronic properties of TiO2 from first principles calculations
3.1 Introduction
3.2 Electronic structure calculations on TiO2: methodological aspects
3.2.1 The bandgap issue
3.2.2 Excess electrons (and holes) in TiO2: the localization problem
3.2.3 Oxygen vacancies
3.2.4 Interstitial Ti species
3.2.5 Photoexcited carriers
3.3 Titania heterojunctions and nanoparticles: computational modeling of cutting-edge materials
3.3.1 Separation of photoexcited charge carriers in titania nanocomposites
3.3.2 Computational modeling of titania nanoparticles
3.4 Conclusions
Acknowledgments
References
4---Synthesis-and-characterization-of-titanium-d_2021_Titanium-Dioxide--Tio-
4 Synthesis and characterization of titanium dioxide and titanium dioxide–based materials
4.1 Introduction
4.2 Preparation methods
4.2.1 Preparation methods of powdered TiO2-based materials
4.2.1.1 Sol–gel
4.2.1.2 Precipitation and coprecipitation
4.2.1.3 Hydrothermal and solvothermal syntheses
4.2.1.4 Sonochemical method
4.2.1.5 Microwave irradiation
4.2.1.6 Spray pyrolysis
4.2.1.7 Impregnation
4.2.1.8 Deposition–precipitation
4.2.2 Preparation methods of TiO2 film
4.2.2.1 Dip-coating
4.2.2.2 Spin–coating
4.2.2.3 Chemical vapor deposition
4.2.2.4 Physical vapor deposition
4.3 Characterization techniques of TiO2
4.3.1 X-ray diffraction
4.3.2 Scanning electron microscopy
4.3.3 Transmission electron microscopy
4.3.4 Brunauer–Emmett–Teller-specific surface area determination
4.3.4.1 Adsorption–desorption phenomena
4.3.4.2 Brunauer–Emmett–Teller isotherm
4.3.4.3 Brunauer–Emmett–Teller surface area determination
4.3.4.4 The preparation of TiO2 samples
4.3.4.5 Used gases for Brunauer–Emmett–Teller analysis
4.3.4.6 Brunauer–Emmett–Teller instrument and its working principle
4.3.5 Diffuse reflectance spectroscopy
4.3.6 Photoluminescence spectroscopy
4.3.7 X-ray photoelectron spectroscopy
4.3.8 Thermal gravimetric analysis
References
5---Synthetic--natural-and-bioinspired-dyes-as-T_2021_Titanium-Dioxide--Tio-
5 Synthetic, natural and bioinspired dyes as TiO2 sensitizers in sustainable solar cells
5.1 Introduction
5.1.1 Photovoltaic technology
5.1.2 Dye-sensitized solar cells
5.2 Semiconductors
5.2.1 Bands formation
5.2.2 The occupation of the orbitals
5.2.3 Titanium dioxide
5.3 Dyes
5.3.1 Synthetic dyes
5.3.2 Natural dyes
5.3.2.1 Anthocyanins
5.3.2.2 Betalains
5.3.2.3 Chlorophylls
5.3.2.4 Other vegetable dyes
5.3.3 Computational details
5.3.4 Bioinspired
5.4 Other functional materials
5.4.1 Characteristics and performance of CEs
5.4.2 Characteristics and performance of electrolytes
5.5 Assembly and characterizations for DSSCs
5.5.1 Development of photoanodes and cathodes
5.5.2 Spectroscopic techniques
5.5.2.1 Raman spectroscopy: TiO2
5.5.2.2 UV-vis and TiO2 emission spectroscopy
5.5.3 Cyclic voltammetry
5.5.4 Roughness and desorption factor
5.5.5 Characteristic I-V curves
5.5.6 Quantum efficiency: IPCE, APCE, and LHE
5.5.7 Electrochemical impedance spectroscopy
5.5.8 Tafel electroanalysis
5.6 Conclusions
References
6---TiO2-based-materials-for-photocatalyti_2021_Titanium-Dioxide--Tio---and-
6 TiO2-based materials for photocatalytic hydrogen production
6.1 Introduction
6.2 Photocatalytic water splitting with TiO2
6.3 Development of sensitive TiO2-based photocatalysts for H2 generation
6.3.1 Bandgap engineering
6.3.2 Surface TiO2 sensitization
6.4 Separation of photogenerated charges in TiO2-based photocatalysts for H2 generation
6.4.1 Charge separation in TiO2 phase junctions
6.4.2 Charge separation in shape-controlled anatase TiO2
6.4.3 Noble metal nanoparticles deposition and Schottky junction fabrication
6.4.4 Fabrication of heterojunctions
6.4.5 Loading cocatalysts on TiO2
6.5 Sacrificial agents in photocatalytic hydrogen production: from overall water splitting to biomass reforming
6.6 Conclusion and perspectives
References
7---TiO2-based-devices-for-energy-relat_2021_Titanium-Dioxide--Tio---and-Its
7 TiO2-based devices for energy-related applications
7.1 Introduction
7.1.1 Titanium dioxide for energy harvesting
7.1.2 Titanium dioxide for energy storage
7.2 Energy storage applications
7.2.1 Supercapacitors
7.2.1.1 Significance of TiO2 polymorph (brookite, anatase, rutile)
7.2.1.2 Significance of nanostructures (nanotubes, nanorods, nanowires)
7.2.2 Batteries
7.2.2.1 Significance of TiO2 polymorph (brookite, anatase, rutile)
7.2.2.2 Significance of nanostructures (nanotubes, nanorods, nanowires)
7.2.3 Hydrogen production and storage
7.2.4 Others
7.3 Conclusion and outlook
References
8---Heat-transfer-by-using-TiO2-nan_2021_Titanium-Dioxide--Tio---and-Its-App
8 Heat transfer by using TiO2 nanofluids
List of abbreviations
8.1 Introduction
8.2 Preparation and characterization of TiO2 nanofluids
8.2.1 Nanoparticles preparation
8.2.2 Preparation of nanofluids
8.2.3 Parameters influencing the aggregation and stability of TiO2 nanofluids
8.2.4 Nanoparticle size measurements
8.2.5 Z-potential measurements
8.2.6 pH measurements
8.3 Heat conduction in TiO2 nanofluids
8.3.1 Influence of particle load
8.3.2 Influence of temperature
8.3.3 Influence of thermal conductivity of the base fluid
8.3.4 Influence of particle cluster size and shape on thermal conductivity
8.3.5 Influence of surfactant
8.3.6 Influence of ultrasonic treatment
8.4 Heat convection in TiO2 nanofluids
8.4.1 Forced convection
8.4.1.1 Influence of particle loading and Re
8.4.1.2 Influence of particle size
8.4.1.3 Influence of temperature
8.4.1.4 Influence of geometry of flow channel
8.4.2 Natural convection
8.4.2.1 Factors influencing natural convection heat transfer of TiO2 nanofluids
8.4.2.2 Influence of nanoparticle type and load
8.5 Boiling heat transfer of TiO2 nanofluids
8.5.1 Influence of nanoparticle type
8.5.2 Influence of particle loading
8.5.3 Influence of surface roughness
8.5.4 Influence of the heater material
8.5.5 Influence of ionic additive
8.6 Applications of TiO2 nanofluids
8.7 Future investigations
References
9---TiO2-as-white-pigment-and-valorization-of-_2021_Titanium-Dioxide--Tio---
9 TiO2 as white pigment and valorization of the waste coming from its production
9.1 Introduction
9.1.1 Titanium minerals
9.1.2 Titanium ore purification
9.2 Routes for the manufacture of titanium dioxide pigments (Pigment White 6)
9.2.1 The chloride process
9.2.2 Sulfate process
9.3 Properties and applications of Pigment White 6
9.3.1 Properties
9.3.2 Applications
9.3.2.1 Coatings, plastics, and paints
9.3.2.2 Printing inks and paper
9.3.2.3 Pharmaceutical and cosmetic industries
9.3.2.4 Textiles
9.3.2.5 Food industry
9.4 Valorization of coproducts and wastes generated
9.4.1 Main wastes generated in the sulfate process
9.4.2 Main wastes generated in the chloride process
References
10---Titanium-dioxide-based-nanomaterials--appli_2021_Titanium-Dioxide--Tio-
10 Titanium dioxide–based nanomaterials: application of their smart properties in biomedicine
10.1 Introduction
10.2 Smart properties of titanium dioxide–based nanomaterials
10.2.1 Advanced photodynamic therapy approached based on hybrid titanium dioxide–based nanomaterials
10.2.2 Advanced sonodynamic therapy approached based on hybrid titanium dioxide–based nanomaterials
10.3 Tissue engineering
10.4 Drug delivery
10.5 Other applications
10.6 Conclusion and perspectives
References
11---TiO2-in-the-food-industry-and-_2021_Titanium-Dioxide--Tio---and-Its-App
11 TiO2 in the food industry and cosmetics
11.1 Introduction
11.2 Titanium dioxide as food additive
11.2.1 Titanium dioxide in food
11.2.2 Influence of titanium dioxide on human health
11.3 Titanium dioxide for food preservation
11.3.1 Antibacterial effects
11.3.2 Ethylene degradation
11.3.3 Active packaging
11.4 Titanium dioxide in cosmetics and personal care products
11.4.1 Regulations
11.4.2 Safety of sunscreens
11.5 Conclusion
References
12---Titanium-dioxide--antimicrobial-surfac_2021_Titanium-Dioxide--Tio---and
12 Titanium dioxide: antimicrobial surfaces and toxicity assessment
12.1 Introduction
12.2 Antibacterial and antimicotic properties
12.2.1 Adverse effect of TiO2 on bacteria
12.2.2 Adverse effects of TiO2 on fungi
12.3 Toxicity assessment on TiO2 NPs
12.3.1 Regulations
12.3.2 Exposure route and biodistrubution
12.3.2.1 Inhalation
12.3.2.2 Ingestion
12.3.2.3 Skin penetration
12.4 Antimicrobial surfaces
12.5 Conclusion
Conflicts of interest
Acknowledgments
References
13---Functionalization-of-glass-by-TiO2-bas_2021_Titanium-Dioxide--Tio---and
13 Functionalization of glass by TiO2-based self-cleaning coatings
13.1 Introduction
13.2 Main principle behind self-cleaning behavior
13.3 Applications of self-cleaning glass and main commercial products
13.3.1 Commercial self-cleaning glasses
13.3.1.1 Pilkington Activ Clear/Blue/Neutral by Pilkington Group Limited
13.3.1.2 Neat Glass produced by Cardinal Glass Industries
13.3.1.3 Self-cleaning glass by Fuyao Glass Industry Group Co. Ltd. UV
13.3.1.4 SunClean by PPG residential Glass
13.3.1.5 BIOCLEAN by Saint-Gobain Glass UK Ltd
13.3.1.6 Renew by Viridian Glass
13.4 Doped TiO2–based coatings for improved self-cleaning ability
13.4.1 Mechanism of doped-TiO2 coatings for glass
13.4.2 Synthesis strategies
13.4.2.1 Wet-deposition methods
13.4.2.2 Dry-deposition methods
13.5 Future tendencies: multilayer coatings for multifunctional glass
13.5.1 Multilayer structures for improved self-cleaning and antireflective ability
13.5.2 Self-cleaning and energy-saving multilayer structures
13.6 Conclusion
References
14---TiO2-as-a-source-of-titan_2021_Titanium-Dioxide--Tio---and-Its-Applicat
14 TiO2 as a source of titanium
14.1 TiO2 production from titanium minerals
14.1.1 Production of titanium-rich slag from titanium minerals
14.1.2 Production of TiO2 from titanium-rich slag
14.2 The Kroll process from TiO2 to Ti
14.3 Electrolytic production of Ti from TiO2 in high-temperature molten salts
14.4 Electrodeposition of Ti in low-temperature liquid salts
Acknowledgments
References
15---TiO2-in-the-building-sect_2021_Titanium-Dioxide--Tio---and-Its-Applicat
15 TiO2 in the building sector
15.1 Introduction
15.2 TiO2 in cement-based materials
15.2.1 General goals of the use of TiO2 in cement-based materials
15.2.2 Use of TiO2 for functional cement-based materials
15.2.2.1 Air-purifying cement-based materials
Role of the climatic conditions
Interactions with the cement matrix
Durability of the photocatalytic activity
Improvement strategies, by TiO2 doping and modifications
15.2.2.2 Water-purifying cement-based materials
15.2.2.3 Self-cleaning cement-based materials
15.2.2.4 Antimicrobial cement-based materials
15.2.2.5 Final remarks
15.2.3 Use of TiO2 for structural cement-based materials
(a) Nano-TiO2 modifies the properties of concrete at the fresh state (rheology and hydration speed)
(b) Nano-TiO2 modifies the properties of hardened concrete (mechanical strength and durability)
15.2.4 Patents on cement-based materials with TiO2
15.3 TiO2 in geopolymers
15.4 TiO2 in ceramic tiles
15.4.1 Ceramic tiles production
15.4.2 Exploitation of TiO2 in ceramic tiles
15.4.3 International patents on photocatalytic ceramic tiles
15.4.4 Standards
15.5 TiO2 in cultural heritage conservation
15.6 Environmental and health concerns in the use of TiO2 in building materials
15.7 Conclusion and perspectives
References
16---TiO2-oxides-for-chromogenic-devices-a_2021_Titanium-Dioxide--Tio---and-
16 TiO2 oxides for chromogenic devices and dielectric mirrors
16.1 TiO2 in electrochromic devices
16.1.1 Deposition techniques
16.2 TiO2 in photo-electrochromic devices
16.3 TiO2 optical properties
16.4 Modeling distributed Bragg reflectors
16.5 Bloch surface waves and microcavity modes
16.6 Conclusion
References
17---TiO2-in-memristors-and-resistive-rand_2021_Titanium-Dioxide--Tio---and-
17 TiO2 in memristors and resistive random access memory devices
17.1 Introduction
17.2 Fundamentals on resistive switching
17.2.1 Electrochemical metallization memories
17.2.2 Valence change memories
17.3 TiO2 in memristors and resistive random access memories: fabrication methods and performances
17.3.1 Anodizing
17.3.2 Atomic layer deposition
17.3.3 Sputtering
17.4 Conclusions and perspectives
References
18---Applications-of-TiO2-in-sensor_2021_Titanium-Dioxide--Tio---and-Its-App
18 Applications of TiO2 in sensor devices
List of abbreviations
18.1 Introduction
18.2 Titanium dioxide in sensor field: principles and mechanisms of action
18.2.1 Mechanism of sensing
18.2.1.1 Resistive-type gas sensors (chemiresistors)
18.2.1.2 Optical sensing
18.2.1.3 Photoconductive devices
18.2.1.4 Photoelectrochemical sensing
18.3 Gas sensors
18.3.1 H2O (humidity)
18.3.2 Dihydrogen (H2)
18.3.3 Dioxygen (O2)
18.3.4 CO2
18.3.5 NH3
18.3.6 CO
18.3.7 NO2
18.3.8 Volatile organic compounds
18.3.8.1 Ethanol
18.3.8.2 Acetone
18.3.8.3 Formaldehyde
18.3.8.4 Trimethylamine
18.3.8.5 Toluene
Conclusion
18.4 Biosensors
18.4.1 Glucose
18.4.2 DNA and biomarkers
18.4.3 Pesticides
18.4.4 Cholesterol derivatives
18.4.5 H2O2
18.4.6 Urea
18.4.7 Glutamate
18.4.8 Bacteria (Escherichia coli, etc.)
18.4.9 Other analytes
18.5 Sensors for environmental applications
18.5.1 Detection of organic pollutants
18.5.2 Detection of dyes
18.5.3 TiO2 in molecular imprinting technology
18.5.4 Metal ions detection
18.6 Fabrication of nanoscale sensors and future prospects
18.7 Conclusion
References
19---TiO2-photocatalysis-for-environme_2021_Titanium-Dioxide--Tio---and-Its-
19 TiO2 photocatalysis for environmental purposes
19.1 General overview on air and water pollution
19.2 General remarks on advanced oxidation processes
19.3 TiO2 photocatalysis for the removal of volatile organic compounds from gaseous stream
19.4 TiO2 photocatalysis for indoor air purification
19.4.1 TiO2 photocatalysis with forced air
19.4.2 TiO2 photocatalysis in indoor environments
19.5 TiO2 photocatalysis for the removal of organic pollutants from water and wastewater
19.6 Conclusion and future perspectives
References
20---Fine-chemistry-by-TiO2-heterogeneou_2021_Titanium-Dioxide--Tio---and-It
20 Fine chemistry by TiO2 heterogeneous photocatalysis
20.1 Introduction
20.2 Reactions of partial oxidation
20.2.1 Oxidation of alcohols to aldehydes
20.2.2 Hydroxylation of aromatic compounds
20.2.3 Epoxidation of alkenes
20.3 Reactions of partial reduction
20.3.1 Hydrogenation of double and triple carbon–carbon bonds
20.3.2 Reduction of carbonyls
20.3.3 Reduction of N-containing functional groups
20.4 Reactions of alkylation
20.4.1 Reactions of addition
20.4.2 Substitution reactions in aromatic compounds
20.4.3 Reactions of carbonyl alkylation
20.5 Conclusion
References
21---Catalytic-applications-of-T_2021_Titanium-Dioxide--Tio---and-Its-Applic
21 Catalytic applications of TiO2
21.1 Introduction
21.2 Titania as catalytic support: role of the strong metal–support interaction
21.3 The role of defects on catalytic performances
21.4 Main reactions involving titania-based catalyst
21.4.1 NOx removal
21.4.1.1 Selective catalytic reduction of NOx
21.4.1.2 Catalytic oxidation of NOx
21.4.2 Deacon process
21.4.3 Reactions with sulfur-rich compounds
21.4.3.1 Hydrodesulfurization processes
21.4.3.2 Claus process
21.4.4 Direct synthesis of hydrogen peroxide
21.4.5 Fischer–Tropsch synthesis
21.4.6 Water–gas shift reaction
21.4.7 CO2 methanation
21.4.8 Biofuels production
21.4.8.1 Transesterification of triglycerides
21.4.8.2 Upgrading of pyrolysis oils
21.4.9 Dehydrogenations, selective oxidations, and hydrogenations
21.4.9.1 (Oxy)dehydrogenations
21.4.9.2 Selective oxidations of alkanes, alcohols, and aromatics
21.4.9.3 Selective oxidations of heteroaromatic compounds
21.4.9.4 Olefin epoxidation
21.4.9.5 Selective oxidation of ammonia to nitrogen
21.4.9.6 Hydrogenations
21.5 Conclusion and outlooks
References
Index_2021_Titanium-Dioxide--Tio---and-Its-Applications
Index