Thermodynamics, Gas Dynamics, and Combustion

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This textbook provides students studying thermodynamics for the first time with an accessible and readable primer on the subject. The book is written in three parts: Part I covers the fundamentals of thermodynamics, Part II is on gas dynamics, and Part III focuses on combustion. Chapters are written clearly and concisely and include examples and problems to support the concepts outlined in the text. The book begins with a discussion of the fundamentals of thermodynamics and includes a thorough analysis of engineering devices. The book moves on to address applications in gas dynamics and combustion to include advanced topics such as two-phase critical flow and blast theory. Written for use in Introduction to Thermodynamics, Advanced Thermodynamics, and Introduction to Combustion courses, this book uniquely covers thermodynamics, gas dynamics, and combustion in a clear and concise manner, showing the integral connections at an advanced undergraduate or graduate student level. 

Author(s): Henry Clyde Foust III
Publisher: Springer
Year: 2022

Language: English
Pages: 419
City: Cham

Preface
Contents
Part I: Fundamentals of Thermodynamics
Chapter 1: Equations of State
1.1 Preview
1.2 Ideal Gas Law
1.3 Ideal Gas Law Applications
1.4 Lee/Kessler Charts
1.5 Cubic Equations of State
1.5.1 Van der Waal
1.5.2 Redlich-Kwong
1.5.3 Acentric Factor
1.5.4 Redlich-Kwong-Soave
1.6 Examples and Problems
1.6.1 Examples
1.6.2 Problems
Appendix 1.1: Table of Ideal Gas Constants
Appendix 1.2: Lee/Kessler Chart (website)
Appendix 1.3: Virial Equations of State (website)
Appendix 1.4: EOS (website)
References
Chapter 2: Heat and Work
2.1 Preview
2.2 Reversible and Irreversible Processes
2.3 Specific Heat, Internal Energy, and Enthalpy
2.4 Polytropic Processes and Work
2.5 Examples and Problems
2.5.1 Examples
2.5.2 Problems
References
Chapter 3: First Law of Thermodynamics
3.1 Preview
3.2 Linear Interpolation
3.3 Using Thermodynamic Tables or NIST Chemistry Webbook
3.4 Conservation of Mass
3.5 First Law
3.5.1 Control Volumes
3.5.2 Closed Systems
3.6 First Law, Open System
3.7 Engineering Devices
3.8 Cycles
3.9 Rankine Cycle
3.10 Problem Solving Procedure for Thermodynamics Problems
3.11 Examples and Problems
3.11.1 Examples
3.11.2 Problems
Appendix 3.1: Rankine Cycle Worksheet
Appendix 3.2: Linear Interpolation (website)
References
Chapter 4: Entropy and the Second Law of Thermodynamics
4.1 Preview
4.2 Reversible and Irreversible Systems
4.3 Carnot Heat Engine and Carnot Heat Pump
4.4 Clausius Inequality
4.4.1 Reversible Heat Engines
4.4.2 Irreversible Heat Engines
4.5 Definition of Entropy, Entropy as a State Function, and Area under T Vs. Ds Graphs
4.5.1 Definition of Entropy
4.5.2 Entropy as State Function
4.5.3 Graph of T Versus S
4.6 Second Law of Thermodynamics
4.7 Entropy of Solids and Liquids
4.8 Entropy of Gases
4.8.1 Entropy of an Ideal, Perfect Gas
4.8.2 Entropy Change of an Ideal, Non-Perfect Gas
4.9 Engineering Efficiency
4.9.1 Engineering Devices for Work out
4.9.2 Engineering Device for Work in
4.10 Examples and Problems
4.10.1 Examples
4.10.2 Problems
References
Chapter 5: Various Heat Engines and Refrigeration Cycles
5.1 Preview
5.2 Vapor Phase Cycles
5.2.1 Improvements to Rankine Cycle
5.2.2 Effects of Engineering Efficiency on Overall Thermal Efficiency
5.2.3 Reverse Rankine Cycle
5.3 Gas Cycles
5.3.1 Brayton Cycle
5.3.2 Reverse Brayton Cycle
5.4 Examples and Problems
5.4.1 Problems
Appendix 5.1: Rankine Cycle Worksheet (website)
Appendix 5.2: Reverse Rankine Cycle Worksheet (website)
Appendix 5.3: Brayton Cycle Worksheet (website)
References
Chapter 6: Thermodynamic Properties and Gas Mixtures
6.1 Preview
6.2 Maxwell’s Equations
6.3 Enthalpy and Entropy as Functions of T and P
6.3.1 Enthalpy and Entropy Functions for Ideal, Perfect Gases
6.3.2 Enthalpy and Entropy Functions for Van der Waal Gas
6.4 Composition of Mixtures
6.4.1 Molar Basis
6.4.2 Mass Basis
6.5 Gas Mixtures, Part I
6.5.1 Ideal Gas Mixtures
6.5.2 Kay’s Rule
6.6 Gas Mixtures, Part II
6.7 Examples and Problems
6.7.1 Examples
6.7.2 Problems
Appendix 6.1: Thermodynamic Relationships
References
Part II: Fundamentals of Gas Dynamics
Chapter 7: Conservation Principles for a Gaseous System, Part I
7.1 Preview
7.2 Conservation Principles
7.2.1 Conservation of Energy
7.2.2 Conservation of Mass
7.2.3 Conservation of Momentum
7.3 Speed of Sound
7.3.1 Speed of Sound in an Ideal Gas
7.3.2 Speed of Sound in Liquids and Solids
7.4 Normal Shocks
7.5 Examples & Problems
7.5.1 Examples
7.5.2 Problems
Appendix 7.1: Moving Shock Wave Frame of Reference
Appendix 7.2: Moving Shock Wave Frame of Reference
References
Chapter 8: Conservation Principles for a Gaseous System, Part II
8.1 Preview
8.2 More General Conservation Principles for Detonations
8.2.1 Conservation of Mass
8.2.2 Conservation of Momentum
8.2.3 Conservation of Energy
8.2.4 Conservation of Energy for Detonation System
8.3 Reversible, Adiabatic (Isentropic) Compressible Flow
8.4 Mass Transfer
8.4.1 Fick’s Law and Species Conservation Principles
8.4.2 Understanding Diffusion from Kinetic Theory of Gases
8.5 More General Conservation Principles for Premixed Laminar Flames
8.5.1 Conservation of Mass
8.5.2 Conservation of Momentum
8.5.3 Conservation of Energy
8.6 More General Conservation Principles for a Non-premixed Laminar Flame
8.6.1 Conservation of Mass
8.6.2 Conservation of Momentum
8.6.3 Conservation of Energy
8.7 Problems
References
Chapter 9: Critical Flow
9.1 Preview
9.2 Effect of Area Changes on Gas Dynamic States
9.3 Ideal Gas
9.4 Van der Waal Gas
9.5 Liquid/Gas Flows
9.6 Speed of Sound in a Two-Phase Flow
9.7 Critical Flow for a Two-Phase Flow System
9.8 Problems
Appendix 9.1: Critical Flow, Ideal Gas (website)
Appendix 9.2: Speed of Sound in a Two-Phase Flow (website)
Appendix 9.3: Omega Method (website)
References
Part III: Fundamentals of Combustion
Chapter 10: Physically Based Combustion
10.1 Preview
10.2 Standard Rankine-Hugoniot Theory
10.2.1 Deriving the Rankine Line
10.2.2 Mass Flux
10.2.3 Derivation for −∆KE
10.2.4 Deriving the Hugoniot Curve
10.2.5 Delineating Combustion Regions
10.3 Chapman-Jouget (CJ) Point for Standard RH System
10.3.1 Derivation for X(cj)
10.3.2 Derivation for Ma(cj)
10.4 Partially Complete Reactions
10.5 Fay’s System and RH Theory
10.5.1 Rankine Line
10.5.2 Mass Flux
10.5.3 Deriving Hugoniot Curve
10.6 Determination of States to Include Ma(cj)
10.6.1 Determination of States without Thermodynamic Changes (Coleman)
10.6.2 Determination of States with Thermodynamic Changes (Adamson)
10.6.3 Ma(cj) for a Detonation System with and without Area Divergence
10.7 Problems
Appendix 10.1: Derivation for Eq. 10.100
Appendix 10.2: More Exact Solution for CJ Conditions
Appendix 10.3: Standard Rankine-Hugoniot Worksheet (website)
Appendix 10.4: Partially Combusted Rankine-Hugoniot Worksheet (website)
Appendix 10.5: Ma(cj) Worksheet (website)
References
Chapter 11: Combustion Chemistry
11.1 Preview
11.2 Stoichiometry
11.3 Enthalpy (Revisited)
11.3.1 Sensible Enthalpy
11.3.2 Latent Enthalpy
11.3.3 Enthalpy of Formation
11.4 Chemical Equilibrium
11.4.1 Gibb’s Free Energy and Chemical Potential
11.4.2 Chemical Reactions
11.4.3 Chemical Reactions and Gibb’s Free Energy
11.4.4 Fugacity
11.4.5 Chemical Equilibrium Constant
11.5 Chemical Kinetics
11.5.1 Reaction Fundamentals
11.5.2 Chemical Kinetic Complexity
11.5.3 Temperature Effects on Reaction Rates
11.6 Adiabatic Flame Temperature
11.6.1 Complete Reaction
11.6.2 Incomplete Reactions
11.7 Problems
Appendix 11.1: Chemical Equilibrium (website)
Appendix 11.2: Chemical Kinetics (website)
References
Chapter 12: Deflagration
12.1 Preview
12.2 Qualitative Differences Between Various Combustion Phenomena
12.3 Premixed Deflagration (Laminar Flames)
12.3.1 Mallard and Le Chatelier’s Laminar Flame Speed
12.3.2 Spalding’s Laminar Flame Speed Theory
12.3.3 Metghalachi and Keck’s Correlations for Laminar Flame Speed
12.4 Non-premixed Deflagration (Diffusion Flames)
12.4.1 Reacting, Constant Density Laminar Jet Flow (Burke and Schumann)
12.4.2 Reacting, Buoyant Laminar Jet Flow (Roper)
12.5 Problems
Appendix 12.1: Laminar Flame Speed (website)
Appendix 12.2: Laminar Flame Speed Correlations (website)
Appendix 12.3: Burke and Schumann’s Model (website)
Appendix 12.4: Roper’s Model (website)
References
Chapter 13: Detonations
13.1 Preview
13.2 Constant Volume Combustion
13.3 Constant Pressure Combustion
13.4 Illustrated Example
13.5 Dynamic Detonation Models
13.5.1 Introduction
13.5.2 Reaction Rates
13.5.3 Derivation of Dynamic Detonation Model
13.5.4 Dynamic Detonation Model with Single Reaction
13.5.5 Dynamic Detonation Model with Double Reactions
13.6 Detonation Structures
13.7 Problems
Appendix 13.1: Illustrated Example (website)
Appendix 13.2: Dynamic Detonation Model – One Step Model (website)
References
Chapter 14: Blast Waves
14.1 Preview
14.2 Euler’s Reactive Flow Equations
14.3 G.I. Taylor’s Blast Theory (G.I. Taylor)
14.3.1 Overview
14.3.2 Similarity Arguments
14.3.3 Numerical Solutions
14.3.4 Approximate Forms
14.3.5 Energy Released
14.4 More General Theory (JHS Lee)
14.4.1 Reduced Forms
14.4.2 Numerical Solutions
14.5 Illustrated Example (Explosions Associated with Rotating Stars)
14.5.1 Reduce Form
14.5.2 Numerical Solutions
14.5.3 Approximate Forms
14.6 Problems
Appendix 14.1: Similarity Arguments (website)
Appendix 14.2: GI Taylor’s Work (website)
Appendix 14.3: JHS Lee’s Work (website)
Appendix 14.4: Fisk, Tjandra and Vaughan’s Work (website)
References
Index