Theory of Applied Robotics: Kinematics, Dynamics, and Control

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Theory of Applied Robotics: Kinematics, Dynamics, and Control is appropriate for courses in robotics that emphasize kinematics, dynamics, and control. The contents of this book are presented at a theoretical-practical level. It explains robotics concepts in detail, concentrating on their practical use. Related theorems and formal proofs are provided, as are real-life applications. Students, researchers, and practicing engineers alike will appreciate this user-friendly presentation of a wealth of robotics topics, most notably orientation, velocity, and forward kinematics. Theory of Applied Robotics: Kinematics, Dynamics, and Control includes: Richly illustrated chapters and over 200 diagrams to help readers visualize concepts. More than 300 detailed examples with fully-worked solutions which expose readers to a balanced and broad understanding of robotics in today’s world. A wealth of detailed problem sets and challenge problems for each chapter for the more advanced reader. A rich solutions manual which is available for instructors. Reza N. Jazar is an associate professor in the Mechanical Engineering Department at Manhattan College. His main research areas is nonlinear dynamic systems, including robotics, vehicles, and MEMS. He's written extensively on many diverse topics in applied mathematics and mechanical engineering subjects. He regularly teaches undergraduate and graduate-level courses on mechanical engineering.

Author(s): Reza N. Jazar
Edition: 1
Year: 2007

Language: English
Pages: 688
Tags: Автоматизация;Робототехнические системы (РТС);

Theory of Applied
Robotics......Page 1
ISBN 0387324755......Page 4
Preface......Page 7
Table of Contents
......Page 14
1.1 Historical Development......Page 19
1.2 Components and Mechanisms of a Robotic System
......Page 20
1.2.2 Joint......Page 21
1.2.4 Wrist......Page 23
1.2.5 End-effector......Page 24
1.3 Robot Classifications......Page 25
1.3.1 Geometry......Page 26
1.3.2 Workspace......Page 29
1.3.3 Actuation......Page 30
1.3.5 Application......Page 31
1.4 Introduction to Robot's Kinematics, Dynamics, and Control
......Page 32
1.4.1 Triad......Page 33
1.4.3 Reference Frame and Coordinate System......Page 34
1.5 Problems of Robot Dynamics......Page 37
1.6 Preview of Covered Topics......Page 39
1.8 Summary......Page 40
Exercises......Page 42
Part I Kinematics......Page 45
2.1 Rotation About Global Cartesian Axes......Page 48
2.2 Successive Rotation About Global Cartesian Axes
......Page 53
2.3 Global Roll-Pitch-Yaw Angles......Page 56
2.4 Rotation About Local Cartesian Axes......Page 58
2.5 Successive Rotation About Local Cartesian Axes
......Page 62
2.6 Euler Angles......Page 63
2.7 Local Roll-Pitch-Yaw Angles......Page 74
2.8 Local Axes Rotation Versus Global Axes Rotation
......Page 76
2.9 General Transformation......Page 78
2.10 Active and Passive Transformation......Page 86
2.11 Summary......Page 88
Exercises......Page 89
3.1 Axis-angle Rotation......Page 94
3.2 * Euler Parameters......Page 101
3.3 * Determination of Euler Parameters......Page 109
3.4 * Quaternions......Page 112
3.5 * Spinors and Rotators......Page 115
3.6.1 Rotation matrix......Page 118
3.6.2 Angle-axis......Page 119
3.6.3 Euler angles......Page 120
3.6.4 Quaternion......Page 122
3.6.5 Euler parameters......Page 124
3.7 * Composition and Decomposition of Rotations
......Page 126
3.8 Summary......Page 131
Exercises......Page 132
4.1 Rigid Body Motion......Page 140
4.2 Homogeneous Transformation......Page 144
4.3 Inverse Homogeneous Transformation......Page 152
4.4 Compound Homogeneous Transformation......Page 158
4.5 * Screw Coordinates......Page 167
4.6 * Inverse Screw......Page 182
4.7 * Compound Screw Transformation......Page 183
4.8 * The Plucker Line Coordinate......Page 186
4.9.1 * Moment
......Page 193
4.9.3 * Plane and Line......Page 194
4.10 * Screw and Plucker Coordinate......Page 199
4.11 Summary......Page 201
Exercises......Page 203
5.1 Denavit-Hartenberg Notation......Page 210
5.2 Transformation Between Two Adjacent Coordinate Frames
......Page 219
5.3 Forward Position Kinematics of Robots......Page 237
5.4 * Coordinate Transformation Using Screws......Page 253
5.5 * Sheth Method......Page 258
5.6 Summary......Page 264
Exercises......Page 266
6.1 Decoupling Technique......Page 274
6.2 Inverse Transformation Technique......Page 281
6.3 Iterative Technique......Page 293
6.4.1 * Existence and Uniqueness of Solution......Page 298
6.4.2 * Invers e Kinematics Techniques......Page 299
6.5 * Singular Configuration......Page 300
6.6 Summary......Page 302
Exercises......Page 303
7.1 Angular Velocity Vector and Matrix......Page 307
7.2 Time Derivative and Coordinate Frames......Page 320
7.3 Rigid Body Velocity......Page 330
7.4 Velocity Transformation Matrix......Page 335
7.5 Derivative of a Homogeneous Transformation Matrix
......Page 340
7.6 Summary......Page 346
Exercises......Page 348
8.1 Rigid Link Velocity......Page 351
8.2 Forward Velocity Kinematics and the Jacobian Matrix
......Page 354
8.3 Jacobian Generating Vectors......Page 359
8.4 Inverse Velocity Kinematics......Page 371
8.5 Summary......Page 376
Exercises......Page 378
9.1 Linear Algebraic Equations......Page 382
9.2 Matrix Inversion......Page 395
9.3 Nonlinear Algebraic Equations......Page 402
9.4 * Jacobian Matrix From Link Transformation Matrices
......Page 409
9.5.1 * Recursive Velocity in Base Frame......Page 417
9.6 Summary......Page 419
Exercises......Page 420
Part II
Dynamics......Page 423
10.1 Angular Acceleration Vector and Matrix......Page 425
10.2 Rigid Body Acceleration......Page 433
10.3 Acceleration Transformation Matrix......Page 436
10.4 Forward Acceleration Kinematic
......Page 439
10.5 * Inverse Acceleration Kinematics......Page 441
10.6 Summary......Page 444
Exercises......Page 446
11.1 Force and Moment......Page 450
11.2 Rigid Body Translational Kinetics......Page 456
11.3 Rigid Body Rotational Kinetics......Page 458
11.4 Mass Moment of Inertia Matrix......Page 469
11.5 Lagrange's Form of Newton's Equations of Motion
......Page 481
11.6 Lagrangian Mechanics......Page 490
11.7 Summary......Page 495
Exercises......Page 498
12.1 Rigid Link Recursive Acceleration......Page 507
12.2 Rigid Link Newton-Euler Dynamics......Page 511
12.3 Recursive Newton-Euler Dynamics......Page 522
12.4 Robot Lagrange Dynamics......Page 530
12.5 *Lagrange Equations and Link Transformation Matrices
......Page 536
12.6 Robot Statics......Page 546
12.7 Summary......Page 553
Exercises......Page 558
Part III
Control......Page 565
13.1 Joint Cubic Path......Page 567
13.2 Higher Polynomial Path......Page 574
13.3 Non-Polynomial Path Planning......Page 585
13.4 Manipulator Motion by Joint Path......Page 587
13.5 Cartesian Path......Page 588
13.6 *Rotational Path......Page 593
13.7 Manipulator Motion by End-Effector Path......Page 596
13.8 Summary......Page 597
Exercises......Page 599
14.1 * Minimum Time and Bang-Bang Control......Page 605
14.2 * Floating Time Method......Page 614
14.3 * Time-Optimal Control for Robots......Page 625
14.4 Summary......Page 631
Exercises......Page 632
15.1 Open and Closed-Loop Control......Page 638
15.2 Computed Torque Control......Page 644
15.3 Linear Control Technique......Page 649
15.3.3 Derivative Control......Page 650
15.4 Sensing and Control......Page 652
15.4.1 Position Sensors.......Page 653
15.4.3 Acceleration Sensors.......Page 654
15.5 Summary......Page 655
Exercises......Page 657
References......Page 660
Appendix A Global Frame Triple Rotation
......Page 670
Appendix B Local Frame Triple Rotation
......Page 672
Appendix C Principal Central Screws Triple Combination
......Page 674
Appendix D Trigonometric Formula
......Page 676
Index......Page 680