The Science of Soft Robots: Design, Materials and Information Processing

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

The goal of this textbook is to equip readers with as structured knowledge of soft robotics as possible. Seeking to overcome the limitations of conventional robots by making them more flexible, gentle and adaptable, soft robotics has become one of the most active fields over the last decade. Soft robotics is also highly interdisciplinary, bringing together robotics, computer science, material science, biology, etc.

After the introduction, the content is divided into three parts: Design of Soft Robots; Soft Materials; and Autonomous Soft Robots. Part I addresses soft mechanisms, biological mechanisms, and soft manipulation & locomotion. In Part II, the basics of polymer, biological materials, flexible & stretchable sensors, and soft actuators are discussed from a materials science standpoint. In turn, Part III focuses on modeling & control of continuum bodies, material intelligence, and information processing using soft body dynamics. In addition, the latest research results and cutting-edge research are highlighted throughout the book.

Written by a team of researchers from highly diverse fields, the work offers a valuable textbook or technical guide for all students, engineers and researchers who are interested in soft robotics.


Author(s): Koichi Suzumori (editor), Kenjiro Fukuda (editor), Ryuma Niiyama (editor), Kohei Nakajima (editor)
Series: Natural Computing Series
Edition: 1
Publisher: Springer
Year: 2023

Language: English
Commentary: Publisher PDF | Published: 13 September 2023
Pages: xvi, 406
City: Singapore
Tags: Soft Robotics; Bio-Inspired Robotics; Soft Material; Soft Machines; Biomechanics; Biohybrid Devices; Flexible Electronics; Material Science; Embodiment; Embodied Intelligence; Physical Reservoir Computing; Soft Matter Physics; Biophysics

Foreword
Preface
Contents
1 Introduction
1.1 Science of Soft Robots
1.1.1 What Are Soft Robots?
1.1.2 Configuration of the Soft Robots
1.1.3 What Can You Do?
1.1.4 Where Do They Fit into the Bio-inspired Robotics Research?
1.1.5 Research and Development of Soft Robots
1.1.6 E-Kagen Robotics
1.2 History of Soft Robots
1.2.1 Introduction
1.2.2 Seeds of Soft Robotics (1960–)
1.2.3 Bioinspiration (1970–)
1.2.4 Soft Actuation (1980–)
1.2.5 Control of Deformation (1990–)
1.2.6 Emergence of Soft Robotics (2000–)
1.2.7 Soft Robotics in Growth (2010–)
1.2.8 Future of Soft Robots (2020–)
References
Part I Design of Soft Robots
2 Soft Mechanisms
2.1 Deformable Mechanisms
2.1.1 Basic Concepts
2.1.2 Basic Function
2.1.3 Process of Deformation
2.1.4 Soft/Rigid Switching
2.1.5 Examples
2.2 Typical Soft Mechanisms
2.2.1 Continuum, Elastic, and Bistable
2.2.2 Examples of Continuum-Elastic Mechanism
2.2.3 Example of Continuum-Bistable Mechanisms
2.2.4 Exercises
References
3 Biological Mechanisms
3.1 Robotics-Inspired Biology
3.1.1 Basic Concepts
3.1.2 How Do Traditional Biologists Test Their Hypotheses?
3.1.3 Experiments with Robots
3.1.4 Why Use Robots Rather Than Computer Simulations?
3.1.5 Robotics-Inspired Biology: Where to Begin
3.1.6 Challenges
3.2 Musculoskeletal System
3.2.1 Basic Concepts
3.2.2 Musculoskeletal Robot
3.2.3 Basic Knowledge of Major Musculoskeletal Component
3.2.4 Key Anatomical Mechanism
3.2.5 How to Start Anatomical Research
3.2.6 Challenges
References
4 Soft Manipulation and Locomotion
4.1 Soft Robot Hands
4.1.1 Basic Concept
4.1.2 Suction Hands
4.1.3 Jamming Hands
4.1.4 Bending Fingers Hands
4.1.5 Soft Cover Hands
4.1.6 Expanding Fingers Hands
4.1.7 Hands-on and Challenges
4.2 Continuum Arm
4.2.1 Introduction
4.2.2 Hyper-Redundant Manipulators and Flexible-Link Manipulators
4.2.3 Continuum Arms in Living Organisms
4.2.4 Typical Structures and Actuation Systems
4.2.5 Posture Control
4.2.6 Features
4.2.7 Summary
4.3 Peristaltic Locomotion
4.3.1 Movement by Peristalsis Motion
4.3.2 Why Peristaltic Movement?—Principle of Peristaltic Locomotion
4.3.3 Peristaltic Crawling of Snails and Caterpillars
4.3.4 Peristaltic Crawling of Earthworm
4.4 Aerial Flight with Soft Components
4.4.1 Basic Concepts
4.4.2 Fluid Mechanics of Flight
4.4.3 Basic Design of a Soft Aerial Robot
4.4.4 Flapping Mechanism for Soft Aerial Robots
4.4.5 Attitude Control of Soft Aerial Robots
4.4.6 Soft Components for Conventional Drone
4.4.7 How to Initiate Soft Aerial Robot Research
4.4.8 Challenges
4.5 Aquatic Swimming with Soft Fins and Body
4.5.1 Basic Concepts
4.5.2 Physical Property of Water
4.5.3 Conventional Screw Propulsion of Ships
4.5.4 Propulsion Mechanism in Animals
4.5.5 How to Start the Soft Fins Research
4.5.6 Challenges
References
5 Nemertea-Inspired Soft Robotic Mechanism
References
6 Life-Machine Fusion Devices
6.1 Electric Ray Generator
6.2 Plant-Based Soft Robots
References
Part II Soft Materials
7 Basics of Polymer
7.1 Morphology and Physical Property of Polymers
7.1.1 Macromolecular Characteristics
7.1.2 Crystalline Structure
7.1.3 Amorphous Structure
7.1.4 Molecular Orientation
7.1.5 Mechanical Properties
7.1.6 How to Start Polymer Property Research
7.1.7 Challenges
7.2 Structure and Classification of Polymers and Functional Polymers
7.2.1 Classifications
7.2.2 Chemical Structures
7.2.3 Functional Polymers
7.2.4 Electro-active Polymers
7.2.5 Challenges
7.3 Soft Materials (Elastomer, Hydrogels, etc.)
7.3.1 Basic Concept of Soft Materials
7.3.2 Structure of Polymeric Soft Materials (De Gennes and De Gennes 1979)
7.3.3 Functional Gels
7.3.4 How to Gain Knowledge on Soft Materials
7.3.5 Challenges for Soft Materials
7.4 Fabrication of Soft Robot Parts Using Three-Dimensional Printers
7.4.1 Designing 3D Models
7.4.2 Bonding
7.4.3 Conclusion
References
8 Biological Material
8.1 Soft Materials Affected by Biological Processes
8.1.1 Introduction
8.1.2 Biohybrid Robots Attracting International Attention
8.1.3 Mechanical Stimulation as an Interface Between Cells and Control
8.1.4 Toward a Growing Biosoft Robot
8.1.5 Conclusion
8.2 Biological Cells
8.2.1 Basic Concepts
8.2.2 Actuation of Biological Cells for Soft Robotics
8.2.3 Sensing of Biological Cells for Soft Robotics
8.2.4 How to Start Using Biological Cells
8.2.5 Challenges
8.3 Biodegradable Soft Material
8.3.1 Approach to Incorporating Biodegradability
8.3.2 Materials
8.3.3 Biodegradable Soft Robotic Devices
8.3.4 Future Outlook
References
9 Flexible and Stretchable Electronics and Photonics
9.1 Principles and Strategies
9.1.1 Strain Applied to the Device
9.1.2 Improvement in Mechanical Robustness
9.1.3 Flexural Rigidity
9.1.4 Stretchability
9.2 Flexible Sensors
9.2.1 Tactile Pressure Sensor
9.2.2 Temperature Sensor (Thermistor)
9.2.3 Summary
9.3 Flexible and Stretchable Electronics and Photonics
9.3.1 Stretchable Wires
9.3.2 Photovoltaics
9.3.3 Photodiodes
9.3.4 Thin-Film Transistors and Circuits
References
10 Soft Actuators
10.1 Overview
10.1.1 Introduction
10.1.2 Mathematical Framework
10.1.3 Energy and Work
10.1.4 “Softness” of the Actuator
10.1.5 Types and Classification of Actuators
10.1.6 Challenges
10.2 Fluidic Actuators
10.2.1 Introduction
10.2.2 Fundamentals, Design, and Modeling
10.2.3 Fabrication Techniques
10.2.4 Fluidic Pressure Sources
10.2.5 Challenges
10.3 Electroactive Polymer Actuators
10.3.1 DEAs
10.3.2 IPMCs
10.3.3 Future Outlook
10.4 Thermomechanical Actuators
10.4.1 Shape-Memory Alloy Actuators
10.4.2 Physical Properties of SMAs
10.4.3 Filiform SMAs for Micro-vibration Actuators
10.4.4 Application to Tactile Displays
10.4.5 Application to Fish Robots Having Flexible Bodies
10.4.6 Challenges
10.5 Bioactuators
10.5.1 Biohybrid Frog-Like Robot
10.5.2 Biohybrid Robot Actuated by Skeletal Muscle Tissues
10.5.3 How to Start
10.5.4 Challenges
References
11 Tissue-Interfaced Electronics
References
12 Paper Mechatronics
References
Part III Autonomous Soft Robots
13 Modeling and Control of Continuum Body
13.1 The Physics of Soft Bodies
13.1.1 A Basic Concept: The Dimension of Soft Body Models
13.1.2 Describing Motion and Deformation
13.1.3 Computing Static Deformations
13.1.4 Computing Dynamic Deformations
13.1.5 Practicalities and Challenges
13.2 Rod Theory
13.2.1 Kinematics
13.2.2 Statics
13.2.3 Discretization
13.2.4 Rod Integration
13.2.5 Computation of Deformation
13.3 Nonlinear Dynamics in a Simple Mechanical System
13.3.1 Passive Dynamic Walker as Example
13.3.2 Attractors and Bifurcations
13.3.3 Basin of Attraction and Riddled Basins
13.4 Controlling Soft Robots
13.4.1 Concept
13.4.2 Simultaneous Positioning of Soft Body
13.4.3 Orientation Control Through Soft Fingertips
13.4.4 Challenges and Perspectives
References
14 Material Intelligence
14.1 Chemical Information Processing
14.1.1 What Is Chemical Information Processing?
14.1.2 Active Gels
14.1.3 Belousov–Zhabotinsky Reaction
14.1.4 Belousov–Zhabotinsky Gels
14.1.5 Mathematical Model for Belousov–Zhabotinsky Gels
14.1.6 Deformation of Belousov–Zhabotinsky Gels
14.1.7 Peristaltic Motion of Belousov–Zhabotinsky Gels
14.1.8 Mathematical Model for the Peristaltic Motion of Belousov–Zhabotinsky Gels
14.1.9 Challenges
14.2 Biological Information Processing
14.2.1 Technology for Autonomous Soft Robots that Process Information Using Biomaterials
14.2.2 Information Processing Between Biomaterials
14.2.3 Living Regulators
14.2.4 How to Assemble Robots with Living Regulators
14.2.5 Information Transmission Pathways Between Biomaterials
14.2.6 Challenges: Programming Robots with Living Regulators
14.3 Temporal and Spatial Information Processing
14.3.1 Rhythms and Patterns: The Simplest, but Complex Behaviors in Biology
14.3.2 Genetic Oscillator
14.3.3 Protein Oscillator
14.3.4 Synchronization of the Biological Rhythms
14.3.5 Biological Pattern Formation by Reaction–Diffusion Systems
14.3.6 Biological Pattern Formations by Active Matters
14.3.7 Introductory Books and Articles on Biological Rhythms and Patterns
14.3.8 Conclusions and Challenges for Artificial Biological Rhythms and Patterns
References
15 Information Processing Using Soft Body Dynamics
15.1 Outsourcing Control to a Soft Body: Embodiment Perspectives
15.1.1 The Universal Gripper
15.1.2 Intelligent Systems as Brain–Body–Environment Systems
15.1.3 Evolutionary Robotics: Design Principle of Brain–Body–Environment Systems
15.2 Machine Learning for Soft Robots
15.2.1 Basic Concepts
15.2.2 Self-organizing Map
15.2.3 Data Classification Using Soft Tactile Sensors
15.2.4 Autonomous Learning the Speaking Skill of a Talking Robot
15.2.5 Challenges
15.3 Information-Processing Capabilities of Soft Bodies
15.3.1 Reservoir Computing: Utilizing Dynamics for Information Processing
15.3.2 Reservoir Dynamics and Its Information-Processing Capacity
15.3.3 Physical Reservoir Computing in Soft Robots
References
16 Toward Understanding and Manipulation of Collective Behaviors Using Nematode Caenorhabditis elegans
References
17 Peristaltic Mixing Pump Based on Intestinal Peristalsis Motion Using Soft Actuators
17.1 Basic Concepts
17.2 Topic and Principle: Intestinal Anatomy and Peristaltic Motion Patterns
17.2.1 Structure of the Intestinal Tract
17.2.2 Generation of the Peristaltic Motion
17.3 Topic and Principle: Focusing on Mechanisms for Peristaltic Motion
17.4 Topic and Principle: Focusing on the Sensor and Control System for Peristaltic Motion
References
Index