The Lanthanides and Actinides: Synthesis, Reactivity, Properties and Applications

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Chemists present an introduction and reference to f-block chemistry for researchers, graduates, and advanced undergraduates. Among their topics are the chemistry of rare-earth metals, solid-state chemistry: synthesis and structural diversity in lanthanide and actinide complexes, coordination chemistry of actinides, small molecule activation by lanthanide complexes, modern applications of the actinides in catalysis, electronic spectroscopy on non-metallic actinide systems, nuclear magnetic resonance of actinides, and applications of rare earths. Annotation ©2022 Ringgold, Inc., Portland, OR (protoview.com)

Author(s): Stephen T. Liddle, David P. Mills, Louise S. Natrajan
Publisher: World Scientific Publishing
Year: 2022

Language: English
Pages: 726
City: London

Contents
Preface
About the Editors
Acknowledgements
List of Abbreviations
1. The Chemistry of Rare-Earth Metals
1.1 Introduction: The Rare-Earth Elements
1.2 General Properties
1.2.1 Electronic configurations of atoms and trivalent ions
1.2.2 Atomic and ionic radii and the lanthanoid contraction
1.2.3 Oxidation states
1.3 Discovery, Location and Abundance of Rare Earths
1.3.1 Discovery of the elements
1.3.2 Ores, locations, miners and producers of rare earths and geopolitical considerations
1.4 Uses of the Rare E
1.4.1 General uses (see also Chapter 17)
1.4.2 Specific uses of rare earths
1.4.3 Rare-earth outlook
1.5 General Chemistry Properties of Rare-Earth Elements and Compounds
1.5.1 Separation of the lanthanoids
1.5.2 Rare-earth recycling
1.5.3 Metal oxide formation
1.5.4 Metal halide formation
1.5.5 Rare-earth carboxylates
1.5.6 Rare-earth salts
1.5.7 Preparation of the metals
1.5.8 Coordination chemistry
1.5.9 Spectral and magnetic properties
1.5.10 Uses in organic synthesis
1.5.11 Organometallics, organoamides, organooxides, organophosphides, etc. — Highly reactive compounds
References
2. The Chemistry of the Actinides
2.1 Discovery and Synthesis of the Actinide Elements
2.1.1 Position in the periodic table
2.1.2 Discovery and synthesis
2.1.2.1 Actinium (89Ac)
2.1.2.2 Thorium (90Th)
2.1.2.3 Protactinium (91Pa)
2.1.2.4 Uranium (92U)
2.1.2.5 Neptunium (93Np)
2.1.2.6 Plutonium (94Pu)
2.1.2.7 Americium (95Am)
2.1.2.8 Curium (96Cm)
2.1.2.9 Berkelium (97 Bk)
2.1.2.10 Californium (98Cf)
2.1.2.11 Einsteinium (99Es) and fermium (100Fm)
2.1.2.12 Mendelevium (101Md)
2.1.2.13 Nobelium (102 No) and lawrencium (103 Lr)
2.1.2.14 Isotopes
2.2 Occurrence and Extraction
2.3 Periodicity, Electronic Configuration and Oxidation States
2.3.1 Relativistic effects on 5f- and 6d-orbitals
2.3.2 Electronic configuration
2.3.3 The actinide contraction
2.3.4 Electrode potentials
2.3.5 Oxidation states
2.3.5.1 +1 oxidation state
2.3.5.2 +2 oxidation state
2.3.5.3 +3 oxidation state
2.3.5.4 +4 oxidation state
2.3.5.5 +5 oxidation state
2.3.5.6 +6 oxidation state
2.3.5.7 +7 and +8 oxidation states
2.3.5.8 Plutonium
2.3.6 Summary
2.4 Structure and Bonding
2.4.1 Actinyl structures and bonding
2.4.1.1 Bonding in the –yl unit
2.4.1.2 Structures of the –yl unit
2.4.1.2.1 Generalities
2.4.1.2.2 Cation–cation interactions
2.4.2 Spherical Ann+ ions
2.4.3 Multiple bonding
References
3. Solid-State Chemistry: Synthesis and Structural Diversity in Lanthanide and Actinide Complexes
3.1 Introduction
3.2 Intermetallics, Oxides and Hydroxides
3.3 Halides
3.4 Oxyanions
3.4.1 Soluble oxyanion systems
3.4.2 Insoluble oxyanion systems
3.5 Summary
References
4. Coordination Chemistry of Lanthanides
4.1 Introduction
4.2 Coordination Numbers1,2
4.3 Complexes
4.3.1 Aqua ions
4.3.2 Hydrated salts1,2
4.3.3 Phosphines
4.3.4 β-diketonates27,28
4.3.5 Nitrates37
4.3.6 Halides1,38–40
4.3.7 Amides49,50
4.3.8 Imides77–79
4.3.9 Phosphides102,103
4.3.10 Phosphinidenes
4.3.11 Boryls
References
5. Coordination Chemistry of Actinides
5.1 Introduction
5.2 Aqua Ions
5.3 Common Precursors
5.4 Uranyl(VI) Complexes
5.5 Actinyl(V) and Cation–Cation Interactions
5.6 Non-Actinyl Complexes of Actinides in High Oxidation State (VI and V)
5.7 Complexes of AnII, AnIII and AnIV
5.7.1 Neutral N-donor ligands
5.7.2 Anionic N-donor ligands
5.7.3 Anionic O donor ligands
5.7.4 O,N donor ligands
5.7.5 S-donor ligands
5.7.6 Redox active ligands
5.8 Actinide Complexes Containing Multiply Bonded Atoms
5.8.1 Imides
5.8.2 Nitrides
5.8.3 Chalcogenides
5.9 Conclusions
References
6. Organometallic Chemistry of Lanthanides
6.1 Introduction
6.2 Organometallic Chemistry of Lanthanide Ions in Unconventional Oxidation States
6.2.1 Conventional oxidation states for organometallic lanthanide chemistry
6.2.2 Synthesis of molecular divalent thulium, dysprosium and neodymium complexes
6.2.3 The reductive pathway and completion of molecular divalent complexes for the whole lanthanide series
6.2.4 Outlook for organometallic lanthanide chemistry in unconventional oxidation states
6.3 Lanthanide Complexes Containing Ln-C σ-Bonds
6.3.1 General considerations on Ln-C σ-bonds
6.3.2 Simple alkyl complexes
6.3.2.1 Methyl
6.3.2.2 Other simple alkyls
6.3.3 Lanthanide complexes of silyl-substituted alkyls
6.3.3.1 CH2SiMe3
6.3.3.2 CH2SiMe2Ph
6.3.3.3 CH(SiMe3)2
6.3.3.4 C(SiMe3)3
6.3.4 Lanthanide benzyl complexes
6.3.4.1 Non-chelating benzyls
6.3.4.2 Chelating benzyls
6.3.5 Lanthanide aryl complexes
6.3.5.1 Phenyl
6.3.5.2 Other aryls
6.3.6 Lanthanide alkynide complexes
6.3.7 Lanthanide tetraalkylaluminate and tetraalkylgallate complexes
6.4 Lanthanide π-Complexes Containing Carbocyclic and Acyclic π-Ligands
6.4.1 Overview of organometallic lanthanide π-complexes
6.4.2 Lanthanide cyclopentadienyl complexes
6.4.2.1 CpX3Ln
6.4.2.2 CpX2LnR
6.4.2.3 CpXLnR2
6.4.3 Lanthanide cyclooctatetraenyl dianion complexes
6.4.4 Lanthanide complexes with C3, C4 and C7 rings
6.4.4.1 C3 rings
6.4.4.2 C4 rings
6.4.4.3 C7 rings
6.4.5 Lanthanide arene complexes
6.4.5.1 Anionic benzene or alkyl substituted benzene complexes
6.4.5.1.1 C6 radical anion
6.4.5.1.2 C6 dianion
6.4.5.1.3 C6 radical trianion
6.4.5.1.4 C6 tetraanion
6.4.5.1.5 Miscellaneous
6.4.5.2 Anionic aryl substituted benzene complexes
6.4.5.2.1 Dianionic ligands
6.4.5.2.2 Tetraanionic ligands
6.4.6 Lanthanide fused arene complexes
6.4.7 Lanthanide alkene, diene and alkyne complexes
6.4.8 Summary and outlook of organometallic lanthanide π-complexes
6.5 Lanthanide Carbene Complexes
6.5.1 Common aspects for lanthanide carbene complexes
6.5.2 Lanthanide methylidene complexes
6.5.2.1 CH2−2
6.5.2.2 CH3− and C4−
6.5.3 Lanthanide N-heterocyclic carbene complexes
6.5.3.1 Simple lanthanide-NHC adducts
6.5.3.2 Chelating-NHC ligands with an anionic anchor
6.5.3.3 Amide-NHCs
6.5.3.4 Alkoxide/aryloxide-NHCs
6.5.3.5 Indenyl/fluorenyl-NHCs
6.5.3.6 Miscellaneously functionalized NHCs
6.5.4 Lanthanide phosphorus-stabilized carbene complexes
6.5.4.1 NPC
6.5.4.2 SPC
6.5.4.3 Non-pincer type carbenes
6.6 Summary and Outlook for the Organometallic Chemistry of Lanthanides
References
7. Organoactinide Chemistry
7.1 Introduction
7.2 Anhydrous Halide, Triflate, Amido and Aryloxide Starting Materials
7.3 Homoleptic Hydride, Borohydride, Aluminohydride, and Aminodiboronate Complexes and Their Lewis Base Adducts
7.4 Homoleptic Acyclic Hydrocarbyl Compounds and Their Lewis Base Adducts
7.4.1 Homoleptic alkyl complexes
7.4.2 Homoleptic allyl complexes
7.5 Ligand Attachment Protocols for the Synthesis of Heteroleptic Compounds
7.5.1 Salt metathesis
7.5.2 Alkane elimination
7.5.3 H2 elimination
7.5.4 Amine elimination
7.5.5 Less-common ligand attachment protocols
7.5.5.1 Trimethylsilyl- or trialkyltin-halide elimination
7.5.5.2 Insertion reactions
7.5.5.3 Addition of (a) X− with concurrent oxidation, or (b) an X· radical
7.5.5.4 Reductive elimination, alkyl radical extrusion and sterically induced reduction
7.5.5.5 Reactions with low-valent precursors and synthons
7.6 Cyclopentadienyl Actinide Complexes
7.6.1 [AnCpx4] complexes
7.6.2 [Cpx3AnR] complexes
7.6.3 [Cpx2AnR2] complexes
7.6.4 [CpxAnR3] complexes
7.6.5 Thermal stability and bond disruption enthalpies of [Cp(4−x)AnRx] complexes
7.6.6 Low-valent cyclopentadienyl complexes
7.6.7 High-valent cyclopentadienyl complexes
7.7 Organoactinide Complexes Bearing Non-Cyclopentadienyl π-Ligands
7.7.1 Cyclobutadienyl and related complexes
7.7.2 Phospholyl, arsolyl, pyrrolyl and related complexes
7.7.3 Carborane complexes
7.7.4 Arene complexes
7.7.4.1 Terminal arene complexes
7.7.4.2 Inverse-sandwich arene complexes
7.7.5 Cycloheptatrienyl complexes
7.7.6 Cyclooctatetraenide complexes
7.7.7 Pentalene complexes
7.7.8 Acyclic π-ligand complexes
7.7.8.1 Alkene/metallacyclopropane and alkyne/metallacyclopropene complexes
7.7.8.2 Butadiene/metallacyclopentene, M(C4R6), complexes
7.7.8.3 Metallacyclopentadiene, M(C4R4), complexes
7.7.8.4 Butadiyne/metallacyclopentatriene, M(C4R2), complexes
7.7.8.5 Pentadienyl complexes
7.8 Neutral and Anionic Non-Cyclopentadienyl Hydrocarbyl Complexes
7.9 Neutral and Anionic Hydride Complexes
7.10 Cationic Alkyl and Related Complexes
7.11 Carbene Complexes
7.12 Cyanide, Carbonyl and Isonitrile Compounds
7.13 Agostic Interactions and Metal–Alkane Coordination
References
8. Small Molecule Activation by Lanthanide Complexes
8.1 Introduction and Scope of the Review
8.2 CO Reactivity
8.3 CO2/CS2/COS Reactivity
8.4 CH4 Reactivity
8.5 N2 Reactivity
8.6 NOx Reactivity
8.7 RN3 Reactivity
8.8 Ce(IV) Reactivity
8.9 Summary
References
9. Small Molecule Activation by Actinide Complexes
9.1 Introduction and Scope of the Review
9.2 Carbon Monoxide
9.3 Carbon Dioxide
9.4 Nitric and Nitrous Oxide
9.5 Dinitrogen
9.6 Water
9.7 Azides
References
10. Modern Applications of the Actinides in Catalysis
10.1 General
10.2 Introduction
10.3 Catalytic Reactions of Alkynes
10.3.1 Oligomerization and cyclotrimerization of terminal alkynes
10.3.2 Isonitrile coupling to terminal alkynes
10.3.3 Hydroelementation of terminal alkynes
10.3.3.1 Inter- and intramolecular hydroamination
10.3.3.2 Intramolecular hydroalkoxylation/cyclization of alkynols
10.3.3.3 Hydrothiolation of terminal alkynes
10.3.3.4 Catalytic hydrosilylation of terminal alkynes
10.3.3.5 σ-bond metathesis of silylalkynes catalyzed by organouranium
10.4 Catalytic Synthesis of Esters from Aldehydes
10.4.1 Catalytic Tishchenko reaction mediated by actinide complexes
10.4.2 Tandem proton-transfer esterification of alcohols with aldehydes
10.5 Catalytic Addition of Protic Nucleophiles to Heterocumulenes
10.6 Dehydrocoupling of Silanes and Amines
10.7 Uranium-Catalyzed Reduction of Azides and Hydrazines
10.8 Other Catalytic Reactions
10.8.1 Asymmetric Diels–Alder reaction
10.8.2 Uranyl-catalyzed Henry addition
10.8.3 Halogen exchange reactions
10.8.4 C–H bond functionalization
10.8.5 Uranyl-mediated acylation of alcohols
10.9 Actinide-Catalyzed Polymerization Reactions
10.9.1 Polymerization of α-olefins
10.9.2 Ring-opening polymerization of cyclic esters
10.9.3 Ring-opening polymerization of epoxides
10.10 Uranium-Catalyzed Electrocatalytic Production of Dihydrogen from Water and Coupling of Carbon Monoxide
10.11 Reductive Homologation and Functionalization of Carbon Monoxide
10.12 Conclusions
Acknowledgments
References
11. Computational Aspects of f-Element Chemistry
11.1 Introduction
11.2 Simulation Methodologies
11.2.1 Density functional theory
11.2.1.1 Approximations to the exchange-correlation energy
11.2.2 Correlated wavefunction approaches
11.2.2.1 Configuration interaction (CI) theory
11.2.2.2 Coupled cluster (CC) theory
11.2.2.3 Complete-active-space self-consistent-field (CASSCF) theory
11.2.2.4 Relativity
11.2.2.5 Basis sets
11.2.3 Analysis methods
11.2.4 Applications
11.2.4.1 Actinyls, AnO2n+
11.2.4.2 Hexahalide complexes of the f-elements
11.2.4.3 Organometallic complexes of the f-elements
11.2.4.4 An–An bonding
11.3 Summary and Outlook
References
12. Spectroscopy of the Actinides
12.1 General
12.2 EXAFS
12.3 XANES
12.4 XMD
12.5 High Resolution X-ray Absorption, High-Energy-Resolution Fluorescence-Detection X-ray Absorption Spectroscopy and Resonant Inelastic X-ray Scattering Spectroscopy
12.6 XPS
References
13. Electronic Spectroscopy on Non-Metallic Actinide Systems
13.1 Methods
13.2 Types of Transitions and Comparison to Lanthanide Systems
13.3 Actinyl Compounds and Related Systems
13.3.1 f0: U(VI), Np(VII)
13.3.2 f1: Pa(IV), U(V), Np(VI)
13.3.3 f2: U(IV), Np(V), Pu(VI)
13.3.4 f3: U(III), Np(IV), Pu(V)
13.3.5 f4: Np(III), Pu(IV)
13.3.6 f5: Pu(III), Am(IV)
13.3.7 f6: Am(III)
13.3.8 f7: Cm(III), Bk(IV)
References
14. Vibrational Spectroscopy of Non-Metallic Actinide Compounds
14.1 General
References
15. Electron Paramagnetic Resonance of Non-Metallic Actinide Systems
15.1 General
15.1.1 f1: Pa(IV), U(V), Np(VI)
15.1.2 f3: U(III), Np(IV), Pu(V)
15.1.3 f5: Pu(III), Am(IV)
15.1.4 f7: Am(II), Cm(III), Bk(IV)
15.1.5 f2, f4, f6
References
16. Nuclear Magnetic Resonance of Actinides
16.1 Introduction
16.2 NMR Spectroscopy of Actinide Containing Compounds
16.2.1 Direct observation of NMR active actinides
16.2.2 Effects of actinides on NMR signals of surrounding nuclei
16.2.3 Paramagnetic chemical shifts
16.3 New Studies of Actinide Complexes
16.3.1 Susceptibility
16.3.2 Effects on nuclei directly bound to actinides
16.4 Conclusion and Outlook
References
17. Applications of Rare Earths
17.1 Rare Earths: The Vitamins of High Technology
17.1.1 Industrial periods
17.1.2 Supplies and end uses
17.2 Catalysts
17.2.1 Fluidified cracking catalysts
17.2.2 Automotive catalysts
17.2.3 Production of artificial rubber and other organic compounds
17.3 Pigments and Additives for Glass, Ceramic and Leather Industries
17.4 Magnets
17.4.1 Electric and hybrid vehicles
17.4.2 Wind turbines
17.4.3 Hard disk drives, data storage and electronic components
17.5 Metallurgy, Alloys and Compounds
17.5.1 Metals and alloys
17.5.2 Magnetic cooling
17.5.3 Fuel cells and batteries
17.5.4 Water treatment
17.6 Ceramics
17.7 Photonics (Phosphors)
17.7.1 Lasers
17.7.2 Telecommunications
17.7.3 Lighting
17.7.4 Displays
17.7.5 Security, signage and tagging applications
17.7.6 Other applications
17.8 Applications in Biosciences
17.8.1 X-ray intensifying screens
17.8.2 Contrast agents for MRI
17.8.3 Lanthanide luminescent bioprobes: The tools
17.8.4 Immunoassays
17.8.5 Point of care analysis, food and drug control
17.8.6 Bioimaging
17.8.7 Drug delivery
17.8.8 Nuclear medicine
17.9 Agriculture and Feed for Livestock
17.10 Energy-Related and Futuristic Applications
17.10.1 Solar energy conversion
17.10.2 Photocatalysis
17.10.3 Optical refrigeration
17.10.4 Quantum information processing and optical computing
17.11 Summary of Applications per Rare-Earth Element
Further Reading
References
18. Applications of Actinides
18.1 Basic Properties
18.2 Applications of Actinides: Summary
18.3 Metallurgy and Metals
18.4 Photonic Applications
18.5 Tracers for Dating
18.6 Semi-Conductor Properties
18.7 Actinides in Catalysis
18.8 Radioactive Sources
18.9 Nuclear Power Generation
18.9.1 Reprocessing spent nuclear fuel
18.10 Nuclear Weapons
References