Targeted Cancer Therapy in Biomedical Engineering

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This book highlights the role of Biomedical Engineering (BME) used in diagnosis (e.g., body scanners) and treatment (radiation therapy and minimal access surgery in order to prevent various diseases). In recent years, an important progress has been made in the expansion of biomedical microdevices which has a major role in diagnosis and therapy of cancer. When fighting cancer, efficacy and speed are of the utmost importance. A recently developed microfluidic chip has enabled a breakthrough in testing the efficacy of specialized cancer drugs.

Effective cancer-targeting therapies will require both passive and active targeting strategies and a thorough understanding of physiologic barriers to targeted drug delivery. Targeted cancer treatments in development and the new combinatorial approaches show promise for improving targeted anticancer drug delivery and improving treatment outcomes.

This book discusses the advancements and innovations in the field of BME that improve the diagnosis and treatment of cancer. This book is focused on bioengineering approaches to improve targeted delivery for cancer therapeutics, which include particles, targeting moieties, and stimuli-responsive drug release mechanisms. This book is a useful resource for students, researchers, and professionals in BME and medicine.

Author(s): Rishabha Malviya, Sonali Sundram
Series: Biological and Medical Physics, Biomedical Engineering
Publisher: Springer
Year: 2023

Language: English
Pages: 948
City: Singapore

Preface
Acknowledgments
Contents
Editors and Contributors
1 Strategies for Cancer Targeting: Novel Drug Delivery Systems Opportunities and Future Challenges
1.1 Introduction
1.2 NPS for Drug Delivery
1.3 Challenges in Cancer Therapy
1.4 Targeted Drug Therapy (TDT)
1.4.1 Ideal Features of Targeted Drug Therapy
1.4.2 Cancer Cell Targeting Mechanisms
1.4.3 Approaches to Targeted Cancer Therapy
1.5 Inhibition of Growth of Cancerous Lesions by Interruption of Protein Synthesis Signals
1.6 Angiogenesis Inhibition
1.6.1 Angiogenesis’s Role in Cancer
1.7 Specific Drug Delivery for the Destruction of Malignant Cells
1.8 Induction of Apoptosis
1.9 Smart Strategies for Cancer Targeting
1.10 Smart Endogenous Stimulus Strategies
1.10.1 pH-Responsive NPS
1.10.2 Enzyme-Responsive NPS
1.10.3 Redox Reaction-Responsive NPS
1.11 Smart Exogenous Stimulus Strategies
1.11.1 Magnetic NPS
1.11.2 Thermoresponsive NPS
1.11.3 Photoresponsive NPS
1.11.4 Ultrasound-Responsive NPS
1.11.5 Electric Field Stimuli-Responsive NPS
1.12 Dual Stimulus-Responsive NPS
1.13 Smart Nanotechnology for Targeting of Cancer
1.13.1 Lipid-Based Nanoparticles (LBNPS)
1.13.2 Solid Lipid NPS (SLNs)
1.13.3 Nanostructured Lipid Carriers (NLCs)
1.13.4 Metal NPS
1.13.5 Ceramic NPS
1.13.6 Carbon-Based Nanosystems
1.13.7 Semiconducting Nanosystems (SCN)
1.13.8 Polymeric NPS
1.14 Conclusion and Future Directions
References
2 Implementation of Biomedical Engineering Tools in Targeted Cancer Therapy: Challenges and Opportunities
2.1 Introduction
2.1.1 Start of Malignant Growth
2.1.2 Types of Malignant Growth/Cancer
2.1.3 Spreading Out of Cancerous Cells and Its Diagnosis
2.1.4 Various Kinds of Cancer Treatments
2.1.5 Limitation/Difficulties in Cancer Therapy
2.1.6 Organization of the Chapter
2.2 Different Types of Targeting Techniques
2.2.1 Ligand-Based Targeting
2.2.2 Side Effects of Targeted Therapy
2.3 Drug Delivery Strategies
2.3.1 Drug Delivery Using AU NPs
2.3.2 Nanoparticles in the cancer Diagnosis and Therapy
2.4 Challenges in Nanomaterial-Based Cancer Therapy:
2.4.1 Challenges Faced During Anticancer Medication Delivery
2.5 Conclusion
References
3 Exploration of Tissue-Engineered Systems for Cancer Research
3.1 Introduction
3.2 Difference in 2D and 3D Cell Culture in Physiological and Structural Aspects
3.2.1 2D Cultures
3.2.2 3D Cell Culture
3.3 Current State of Tissue Engineering
3.3.1 Smart Biomaterials
3.3.2 Whole Organ Engineering
3.3.3 Spheriods and Organoids
3.4 Microfluidics and Body-on-a-Chip/Organ-on-a-Chip
3.4.1 Microfluidics in Cancer Research
3.4.2 Application of Microfluidics System in the Field of Cancer Biology is Explained in the Upcoming Section
3.4.3 Application of Microfluidics for Organ-on-a-Chip System
3.4.4 Application of Microfluidics for Studying the Process of Metastasis
3.4.5 Application of Microfluidics to Study Cancer Phenotypes
3.4.6 Application of Microfluidics for Replication of TME on Chip
3.4.7 Application of Microfluidics to Study Shear Stress
3.4.8 Application of Microfluidics in Isolation of CTCs
3.4.9 Application of Microfluidics for Drug Screening Using Droplet Microfluidics
3.5 Integration of Nanotechnology
3.6 Tissue-Engineered Models Used in Cancer Reserch
3.6.1 Osteosarcoma
3.6.2 Breast Cancer
3.6.3 Lung Cancer
3.6.4 Ovarian Cancer
3.6.5 Liver Cancer
3.6.6 Blood Cancer
3.7 Conclusion and Future Directions
References
4 Biomaterial-Based Delivery Systems for Chemotherapeutics
4.1 Introduction
4.1.1 The Generations of Biomaterials
4.1.2 Role of Biomaterials in Cancer Therapy
4.2 Types of Biomaterials
4.2.1 Natural Biomaterials
4.2.2 Synthetic Biomaterials
4.2.3 Others
4.3 Conclusion and Future Perspectives
References
5 Immunotherapy: Targeting Cancer Cells
5.1 Introduction to Immunotherapy
5.2 Approaches of Immunotherapy
5.2.1 Immune Checkpoint Inhibitors
5.2.2 Adoptive Cell Therapy (ACT)
5.2.3 NK Cell Therapy
5.2.4 Immunotherapy Using Oncolytic Viruses
5.2.5 Immunotherapy Using Cancer Vaccines
5.2.6 Cytokine Therapies
5.3 Future Directions
5.4 Conclusion
References
6 Bioinformatics Tools to Discover and Validate Cancer Biomarkers
6.1 Introduction
6.2 Conclusion
References
7 Application of Biomaterials in Cancer Research
7.1 Introduction
7.2 Classification of Biomaterials
7.2.1 First-Generation Biomaterial
7.2.2 Second-Generation Biomaterial
7.2.3 Third-Generation Biomaterial
7.3 Biomaterial for Cancer Immunotherapy
7.3.1 Implantable Biomaterials
7.3.2 Injectable Biomaterials
7.3.3 Transdermal Biomaterials
7.3.4 Novel Class of Biomaterials is Utilized for Cancer Immunotherapy
7.4 Engineered Biomaterials for Cancer Immunotherapy
7.5 Biomaterials for Vaccine-Based Cancer
7.5.1 Integrating Cancer Vaccines and Biomaterials
7.5.2 Biomaterials for Tumor Targeting and Alteration
7.6 Biomaterial Implants to Monitor Cancer Recurrence
7.7 Biomaterial Strategies to Modulate Cancer
7.7.1 Cancer Molecular Markers
7.7.2 Biomaterials for Cancer Therapy
7.8 Biomaterials Approaches Tumor Modeling
7.9 Biomaterials Used in Liver Cancer Treatment
7.10 Biomaterial-Assisted Photoimmunotherapy for Cancer
7.10.1 Biomaterial-Assisted Photothermal Immunotherapy
7.10.2 Biomaterial-Assisted Photodynamic Immunotherapy
7.10.3 Silk as Innovative Biomaterial for Cancer Therapy
7.10.4 An Anticancer Medication Delivery System Using Silkworm Silk
7.10.5 Marine-Derived Biomaterials for Cancer Treatment
7.10.6 Bioactive Agents Made of Marine Biopolymers
7.11 Conclusion
References
8 Engineered Tissue in Cancer Research: Techniques, Challenges, and Current Status
8.1 Origin of Tissue Engineering
8.2 Current Status of Tissue Engineering
8.3 Challenges in Tumor Engineering
8.3.1 Hypoxic Tumor Environment
8.3.2 Angiogenesis
8.3.3 Acidification of TME
8.3.4 Epithelial–Mesenchymal Transition
8.3.5 Tumor Endothelial Heterogenicity
8.3.6 Experimental Design
8.3.7 Microenvironmental Conditions
8.4 Paradigm Shift from 2 to 3D Techniques in Cancer Research
8.5 Applications of Tissue Engineering with Particular Emphasis on Cancer
8.5.1 Three-Dimensional (3D) Cell Cultures Models
8.5.2 In Vitro Synthesis of Tissues and Organs
8.5.3 In Vivo Engineering of Tissue and Organ
8.5.4 Biomaterials in Tissue Engineering
8.5.5 Drug Testing by Using Microtissues
8.5.6 Tissue Engineering and Drug Delivery Applications in Cancer Treatment
8.5.7 Novel Applications
References
9 CADD for Cancer Therapy: Current and Future Perspective
9.1 Introduction
9.2 Development of Targeted Cancer Therapy
9.3 Computer-Aided Drug Design
9.4 Computer-Aided Drug Design in Targeted Cancer Therapy
9.5 Cancer Drug Targets
9.5.1 Tumor Alterations Relevant for Genomics-Driven Therapy (TARGET)
9.5.2 Therapeutically Applicable Research to Generate Effective Treatments (TARGET)
9.5.3 Checkpoint Therapeutic Target Database (CKTTD)
9.5.4 Non-coding RNAs and Drug Targets in Cancer (NoncoRNA)
9.5.5 Therapeutic Target Database (TTD)
9.5.6 Protein Data Bank (PDB)
9.5.7 The Cancer Molecular-Targeted Therapy Database (CMTTdb)
9.5.8 Cancer Drug Resistance Database (CancerDR)
9.5.9 CanImmunother
9.6 Receptor Tyrosine Kinases (RTKs)
9.7 Tyrosine Kinases Overexpression in Cancer
9.8 Application of Computer-Aided Drug Design in Targeted Cancer Research
9.9 Anticancer Molecule Databases
9.9.1 CancerDrugs_DB
9.9.2 canSAR
9.9.3 CancerPPD
9.9.4 PharmacoDB
9.9.5 ReDO_DB
9.9.6 TIPdb
9.9.7 pdCSM-Cancer
9.9.8 ACNPD
9.9.9 NPACT
9.9.10 DrugCentral
9.9.11 DrugBank Online
9.9.12 COlleCtion of Open Natural ProdUcTs (COCONUT)
9.9.13 African Natural Products Database (ANPDB)
9.9.14 Natural Products Atlas
9.9.15 Phenol-Explorer
9.9.16 ZINC
9.9.17 PubChem
9.9.18 Anticancer Prediction Tool
9.9.19 AntiCP
9.9.20 Machine Learning-Based Prediction of Cell-Penetrating Peptides (MLACP)
9.9.21 ACPred-FL
9.9.22 XDeep-AcPEP
9.9.23 Chemoinformatics Tools in Targeted Cancer Therapy
9.9.24 DataWarrior
9.9.25 SwissADME
9.9.26 pkCSM
9.9.27 ADMETlab 2.0
9.9.28 Molinspiration
9.9.29 Molecular Docking in Targeted Therapy Studies
9.10 Conclusion
References
10 Leveraging Advancement in Robotics in the Treatment of Cancer
10.1 Introduction
10.2 Epidemiology of Cancer
10.3 Timeline of Cancer Treatment
10.3.1 Surgical Treatments
10.3.2 Radiotherapy
10.3.3 Chemotherapy
10.3.4 Targeted Therapy
10.3.5 Immune Checkpoint Inhibitors
10.4 Robotic Surgery
10.4.1 History and Background of Robotics’ Surgery
10.4.2 Current Robotic Surgical Scenario
10.4.3 Autonomy/AI in Robotic Surgery
10.5 Robotics in Surgery of Cancer and Tumors
10.5.1 Neurosurgery
10.5.2 Cardiac Surgery
10.5.3 Pulmonary Surgery
10.5.4 Mediastinum
10.5.5 Mastectomy
10.5.6 GIT
10.5.7 Urology
10.5.8 Gynecology
10.5.9 Pediatric Surgery
10.5.10 Dermatology
10.6 Pros and Cons of Robotics in Surgery
10.7 Microrobots Approach in Cancer Therapy
10.8 Robotics in Indian Scenario
10.9 Conclusion
References
11 Innovative Biomedical Equipment for Diagnosis of Cancer
11.1 Introduction
11.2 Novel Approaches for Cancer Diagnosis
11.2.1 Photonic Crystal Fibre
11.2.2 Terahertz Spectroscopy and Imaging
11.2.3 Digital Infrared Thermal Imaging
11.2.4 Ultrawideband (UWB) Radar-Based System
11.2.5 Electronic Nose
11.2.6 Aptamer
11.2.7 Computer-Aided Detection (CADe) and Diagnosis (CADx) System
11.2.8 CRISPR-Cas13 System
11.2.9 Organ-on-a-Chip for Cancer
11.2.10 Cancer-on-a-Chip
11.2.11 Circulating Tumour Cells Technology
11.2.12 Tumour-Derived Extracellular Vesicles
11.2.13 Bubble with Ultrasound
11.2.14 Navigation Bronchoscopy
11.2.15 Confocal Laser Endomicroscopy
11.2.16 Nanotechnology-Based Biomedical Equipment
11.2.17 Computed Tomographic Colonography
11.2.18 Laser Raman Spectroscopy
11.2.19 Contrast-Enhanced Ultrasound
11.2.20 Internet of Things
11.3 Types of Cancer and Biomedical Equipment Utilized
11.4 Conclusion and Future Prospects
References
12 Detection of Cancer Biomarker by Advanced Biosensor
12.1 Introduction
12.1.1 Biosensors: An Evolution
12.2 Biosensor Sniffs for Cancer, Using Artificial Intelligence
12.2.1 Machine Learning
12.2.2 CMOS
12.2.3 Lab on a Chip (LOC)
12.2.4 Chip-Based Optical Sensor
12.2.5 FET
12.2.6 Optical Fiber Biosensors
12.2.7 Aptasensors
12.3 Protein Biomarkers for Cancer Analysis Using PEC
12.3.1 A Smartphone-Based Colorimetry Biosensor
12.3.2 Microfluidic Impedance Biosensors
12.3.3 Electrochemiluminescence
12.4 Selected Cancer Biomarkers
12.4.1 CD44
12.4.2 CA 125
12.5 Future Directions
12.6 Conclusion
References
13 Advancement of Nanocarrier-Based Engineering for Specific Drug Delivery for Cancer Therapy
13.1 Introduction
13.2 Cancer Nanotechnology: A New Paradigm in Cancer Treatment
13.3 Nanotechnology Approaches for Cancer Treatment
13.3.1 Liposomal Nano-Carriers
13.3.2 Micelles
13.3.3 Quantum Dots (QDs)
13.3.4 Carbon Nanotubes (CNt)
13.3.5 Dendrimers
13.3.6 Niosomes
13.3.7 Nanoparticles
13.3.8 Nanocrystals
13.3.9 Nanoemulsions
13.3.10 Nanocapsule
13.3.11 Nanosphere
13.4 Cancer Diagnostics and Treatment Using Nanotechnology
13.5 Aspects of Future Scientific Challenges
13.6 Conclusion
References
14 Nano-Drug Delivery Systems for Tumour-Targeting: Overcoming the Limitations of Chemotherapy
14.1 Introduction to Nanocarriers
14.1.1 Organic Nanocarriers
14.1.2 Inorganic Nanocarriers
14.1.3 Organic/Inorganic Hybrid Nanocarriers
14.2 Targeting Mechanisms
14.2.1 Passive Mechanism
14.2.2 Active Mechanism
14.3 Specific Tumours and Relative Nanocarriers
14.3.1 Breast Tumour
14.3.2 Lung Tumour
14.3.3 Pancreatic Tumour
14.4 Conclusion
References
15 Microfluidics and Cancer Treatment: Emerging Concept of Biomedical Engineering
15.1 Introduction
15.2 Microfluidics
15.2.1 Microfabrication
15.3 Mimicking the Tumor Microenvironment
15.4 Diagnosis
15.4.1 Microfluidic Circulating Tumor Cells (CTC) Detection
15.4.2 Microfluidic Tumor Exosomes Isolation
15.4.3 Microfluidic ctDNA Detection
15.4.4 Microfluidic Measurement of Proteins in Cancer
15.5 Treatment
15.5.1 Drug Delivery and Cancer Microfluidics
15.5.2 Screening of Drugs Using Microfluidic Cancer Models
15.5.3 Radiation Therapy of Cancer Using Microfluidics
15.5.4 Gene Delivery for Cancer Using Microfluidics
15.6 Conclusion
References
16 Recent Developments in Two-Dimensional (2D) Inorganic Nanomaterials-Based Photothermal Therapy for Cancer Theranostics
16.1 Introduction
16.2 2D Inorganic Nanosheets for Cancer Theranostics
16.3 Synthetic Routes of 2D-NSTs
16.3.1 Top-Down Technique for 2D-NSTs
16.3.2 Bottom-Up Approach for 2D-NSTs
16.4 Surface Modification/Functionalization of 2D-NSTs
16.4.1 Metal Doped 2D-NSTs
16.4.2 Surface-Modified/Decorated 2D-NSTs
16.5 2D-NSTs for Synergistic Phototherapies
16.5.1 MXene 2D-NSTs
16.5.2 Transition Metal Dichalcogenide (TMDC) 2D-NSTs
16.5.3 Graphene 2D-NSTs
16.5.4 Black Phosphorus (BP) 2D-NSTs
16.6 Toxicity Performances of 2D-NSTs
16.7 Outlooks and Conclusion
References
17 Cyclodextrins and Cyclodextrin-Based Nanosponges for Anti-Cancer Drug and Nutraceutical Delivery
17.1 Introduction
17.2 Obstacles in Tumor Treatment
17.2.1 Blood
17.2.2 Tumor Microenvironment
17.2.3 Cellular Barriers
17.3 Synthesis and Classification of CD-Based NSs
17.3.1 Synthesis
17.3.2 Classification
17.4 Cyclodextrins and Cyclodextrin-Based Polymers/Anti-Cancer Drugs’ Inclusion Complexes, Their Formation, and Characterization
17.4.1 Microscopic Analysis
17.4.2 Spectroscopic Analysis
17.4.3 Thermal Analysis
17.4.4 Chromatographic Analysis
17.4.5 X-ray Techniques
17.4.6 Mechanical Analysis
17.4.7 Swelling Properties
17.4.8 Molecular Modeling Studies
17.5 Cyclodextrins and Cyclodextrin-Based Nanosponges as Agents for Anti-Cancer Treatment
17.5.1 Classical Drug Complexes
17.5.2 Nutraceutical Complexes
17.6 Conclusions and Future Perspectives
References
18 Theranostic Approaches for Diagnosis and Treatment of Cancer: An Update
18.1 Introduction
18.2 Anticancer Drug Delivery: Challenges
18.2.1 Multi Drug Resistance (MDR)
18.2.2 Biopharmaceutical Properties
18.2.3 Toxicity
18.3 Scope of Theranostics Nanomedicine in Cancer
18.3.1 Polymeric Nanomedicine
18.3.2 Lipid-Based Nanomedicine
18.3.3 Inorganic Nanomedicine
18.3.4 Carbon-Based Nanomedicine
18.4 Clinical Translational Perspectives of Theranostic Nanomedicine
18.5 Conclusion and Future Directions
References
19 MicroRNA Biomarkers for Oral Cancer: A Meta-Analytic Review
19.1 Introduction
19.2 Collection of Supporting Data and Meta-Analysis
19.2.1 Eligibility Criteria for Data Extraction
19.2.2 Statistical Analysis of Data
19.3 Bioinformatics Analysis
19.3.1 Transcription Factors, and Target Genes of DE-miRNAs
19.3.2 Functional and Pathway Enrichment Analysis
19.4 Outcome of Meta-Analysis and Bioinformatics Analysis
19.4.1 Overview of the Included Studies
19.4.2 Differentially Expressed MiRNAs
19.4.3 Targets Genes and Transcription Factors of DE-miRNAs
19.4.4 Functional and Pathway Enrichment Analysis
19.5 Discussion
19.6 Conclusions
References
20 Application of Magnetic Nanoparticles in Cancer: Drug Delivery and Therapy
20.1 Introduction
20.2 Overall Synthesis and Characterization of MNPs
20.3 Toxicity, Distribution, and Pharmacokinetics of MNPs
20.4 Evolvement of Tumors and Their Distribution
20.5 Drug Delivery
20.5.1 Passive Targeting
20.5.2 Active Targeting
20.6 Chemotherapy Agents
20.6.1 Doxorubicin
20.6.2 Cisplatin
20.6.3 Paclitaxel
20.6.4 Docetaxel
20.7 Other Drugs for Targeted Delivery
20.8 Diagnosis of Cancer
20.8.1 Imaging Methods
20.8.2 Imaging Positions
20.9 Treatment of Cancer
20.9.1 Magnetic Hyperthermia
20.9.2 Photodynamic Therapy (PDT)
20.9.3 Photothermal Therapy PTT
20.10 Conclusion
References
21 Vehicles for Delivery of Therapeutic Agent for Cancer Therapy
21.1 Introduction
21.2 Limitations in Cancer Therapy
21.2.1 Cytotoxicity
21.2.2 Harmful Effects of Cancer Therapy
21.2.3 Polypharmacology
21.3 Advancement of Nanomaterials-Based Formulations in Cancer Therapy
21.3.1 Nanoparticles
21.3.2 Liposomes
21.3.3 Solid Lipid Nanoparticles (SLN)
21.3.4 Dendrimers
21.3.5 Carbon Nanotubes (CNTs)
21.3.6 Quantum Dots (QDs)
21.3.7 Micelles
21.3.8 Hydrogel
21.3.9 Silica Nanoparticle
21.3.10 Magnetic Nanoparticles
21.3.11 Gold Nanoparticles
21.4 Strategies Involved in Nanomaterials Targeting Cancer Therapy
21.4.1 Nanomaterials Involved in Cancer Cells Targeting
21.4.2 Nanomaterials Targeting the Tumor Microenvironment
21.4.3 Nanomaterial’s Targeting for Immunotherapy
21.5 Conclusion
References
22 Photothermal Therapy for Cancer Treatment
22.1 Introduction
22.2 Molecular Mechanisms of Photothermal Therapy
22.3 Factors Influencing Anti-Tumor Activity of Photothermal Therapy
22.3.1 Temperature
22.3.2 Photothermal Agents
22.3.3 Wavelength of Laser Light
22.3.4 Fluence Rate
22.3.5 Irradiation Time
22.4 State-Of-The-Art Targeted Photothermal Cancer Therapy
22.4.1 Nanomaterial-Mediated Photothermal Cancer Therapies
22.4.2 Conjugation for Targeting and Deep Penetration into Tumor Tissue
22.5 Combination of PTT with Other Anti-Cancer Therapies
22.5.1 Combining with Chemotherapy
22.5.2 Combining with Radiotherapy
22.5.3 Combining with Surgery
22.5.4 Inhibiting Heat Emergency Proteins
22.5.5 Combining with Immunotherapy
22.6 Summary and Conclusion
References
23 Tool and Techniques on Computer-Aided Drug Design for Targeted Cancer Therapy
23.1 Introduction
23.2 CADD Methods
23.3 Targeted Cancer Therapy
23.3.1 Targeting Oncogenes
23.3.2 Targeting Cancer-Related mRNA
23.3.3 Targeting Oncoproteins
23.3.4 Targeting Epigenetic Receptors
23.4 Tackling Multidrug Resistance in Cancer Using CADD
23.5 Pharmacokinetics of Small Molecule Inhibitors
23.6 Drug Repositioning
23.7 Immunoinformatics
23.8 Conclusion
References
24 Importance of Gut Microbiome-Based Therapeutics in Cancer Treatment
24.1 Introduction
24.2 Why to Target Gut Microbiota in Cancer Treatment?
24.3 Bacteria that Improve Anticancer Drug Efficacy
24.4 Pathogenic Microbes Contributing in Cancer Development
24.5 Prebiotics and Probiotics in the Management of Cancer
24.5.1 Prebiotics and Probiotics Treatment in Colon Cancer
24.5.2 Prebiotics and Probiotics Treatment in Breast Cancer
24.5.3 Prebiotics and Probiotics Treatment in Hepatic Cancer
24.5.4 Role of Bacterial Strains in Several Cancer Models
24.5.5 Probiotics as Antimutagens
24.6 Role of Short-Chain Fatty Acids (SCFAs) in Cancer Treatment
24.6.1 SCFAs and Intestinal Cancer
24.6.2 SCFAs and Hepatic Cancer
24.6.3 SCFAs and Colorectal Cancer
24.6.4 SCFAs and Breast Cancer
24.7 Fecal Microbiota Transplantation (FMT) in Cancer
24.7.1 FMT and Gastrointestinal Cancer
24.7.2 FMT and Hepatic Cancer
24.7.3 FMT and Pancreatic Cancer
24.7.4 FMT and Breast Carcinoma
24.7.5 FMT and Melanoma
24.8 Conclusion
References
25 Computational Tools for Drug Discovery of Anticancer Therapy
25.1 Introduction
25.2 Binding Site Prediction for the Targets
25.3 Keystones for CAD Diagnosis
25.3.1 Pre-processing of Image
25.3.2 Segmentation of Image
25.3.3 Similarity-Based Approach
25.3.4 Discontinuity-Based Approach
25.3.5 Extraction and Selection of Features
25.3.6 Classification
25.3.7 Evaluation of Performance
25.3.8 Rule of ABCD
25.4 Recent and Indicative Studies in Cancer Diagnosis
25.5 Future Advances and Challenges
25.6 Conclusions
References
26 Stem Cell Therapy in Cancer
26.1 Introduction
26.2 Sources of Stem Cells
26.2.1 Embryonic Stem Cells and Induced Pluripotent Stem Cells
26.2.2 Mesenchymal Stem Cells
26.2.3 Hematopoietic Stem Cells
26.2.4 Neural Stem Cells
26.2.5 Endothelial Progenitor Stem Cells
26.2.6 Cancer Stem Cells
26.3 Properties of Stem Cells
26.4 Types of Stem Cells Involved in Treatment of Cancer
26.4.1 Adult Stem Cells
26.4.2 Pluripotent Stem Cells
26.5 Mechanism of Action of Stem Cells in Cancer Therapy
26.5.1 Signaling Process in Cancer Stem Cells
26.5.2 Secretion of Paracrine Factors Leading to Differentiation
26.5.3 Bone Marrow Homing Mechanism
26.5.4 Tropic Effects Induced by Tumor Cells
26.6 Choice of Stem Cells Bone Marrow/Peripheral
26.7 Role of Purging in Isolation of Stem Cells
26.8 Lifespan of Adult Stem Cells
26.9 Applications of Stem Cell Therapy in Relation to Cancer
26.9.1 Hematopoietic Stem Cell Transplantation
26.9.2 Stem Cells as a Therapeutic Carrier
26.9.3 Mesenchymal Stem Cells After Treatment
26.9.4 Secreted Agents
26.10 Side Effects/Potential Risks of Stem Cell Therapy
26.10.1 Adverse Effects as a Result of Allogeneic Transplant of HSCs
26.10.2 Toxicity and Resistance of Drug
26.10.3 Sudden Immune Response and Autoimmunity
26.10.4 Tumorigenesis
26.10.5 Viral Based Infections
26.11 Other Applications of Stem Cells in Cancer Therapy
26.11.1 Anticancer Drug Screening
26.11.2 Development of Regenerative Medicine
26.12 Factors Effecting Stem Cell Therapy
26.12.1 Type of Stem Cell
26.12.2 Route of Transplantation of Stem Cells
26.12.3 Number of Cells and Timing of Transplantation
26.13 Clinical Uses of Stem Cells in Treatment of Cancer
26.14 Conclusion
References
Index