Sustainable Composites for Lightweight Applications

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Carbon and glass fibre reinforced composite materials have been used for many years in several different types of applications. However, these conventional composites are derived from non-renewable reinforcements and they pose a significant threat to the environment. Government legislation and consumer behaviour have recently forced many industries to adapt sustainable composites. Industries such as automotive, marine and aerospace are now seeking sustainable lightweight composites with the aim to reduce the overall weight of the components with enhanced materials and design aspects. Therefore, there is high demand on research for the development of sustainable lightweight composites. This book presents a comprehensive review of lightweight composites with the central aim to increase their use in key industrial sectors such as automotive, marine and aerospace. There is no such book currently available that is dedicated to sustainable lightweight applications covering important topics such as key drivers for lightweight composites, mechanical properties, damage characterisation, durability and environmental aspects. Key topics that are addressed include: The roles of reinforcements and matrices in composite materials Sustainable natural fibre reinforcements and their morphological structures Lightweight applications and properties requirements Design, manufacturing processes and their effects on properties Testing and damage characterisation of composite materials Sustainable composites and techniques for property enhancement Future trends and challenges for sustainable composites in lightweight applications It will be a valuable reference resource for those working in material Science, polymer science, materials engineering, and industries involved in the manufacture of automotive and aerospace components from lightweight composite materials. Provides a comprehensive review of sustainable lightweight composites looking at key industrial applications such as automotive, marine, and aerospace and construction Important relationships between structure and properties are analysed in detail Enhancement of properties through hybrid systems, are also explored with emphasis on design, materials selection and manufacturing techniques

Author(s): Hom Dhakal, Sikiru Oluwarotimi Ismail
Publisher: Woodhead Publishing
Year: 2020

Language: English
Pages: 310
City: Oxford

Front-Matter_2021_Sustainable-Composites-for-Lightweight-Applications
Sustainable Composites for Lightweight Applications
Copyright_2021_Sustainable-Composites-for-Lightweight-Applications
Copyright
Preface_2021_Sustainable-Composites-for-Lightweight-Applications
Preface
Key features of this book
Target audiences of this book
Chapter highlights of this book
1---Introduction-to-composite-m_2021_Sustainable-Composites-for-Lightweight-
1. Introduction to composite materials
1.1 Background and context
1.2 Matrices and their types
1.2.1 Types and main functions and the properties of matrices
1.2.1.1 Epoxy resins
1.2.1.2 Polyester resins
1.2.1.3 Vinyl ester resins
1.2.1.4 Phenolic resins
1.2.1.5 Polyethylene
1.2.1.6 Polypropylene
1.2.1.7 Polystyrene
1.2.1.8 Polylactic acid
1.3 Reinforcements and their types
1.3.1 Conventional reinforcements and their types
1.3.1.1 Glass fibres
1.3.1.2 Carbon fibres
1.3.1.3 Ceramic fibres
1.3.2 Natural fibres and their types
1.3.2.1 Advantages and disadvantages of natural fibres
1.4 Main drivers of composite materials
1.5 Application of sustainable composite materials
1.6 Summary
References
Further reading
2---Sustainable-natural-fibre-reinforcement_2021_Sustainable-Composites-for-
2. Sustainable natural fibre reinforcements and their morphological structures
2.1 Commonly used sustainable materials (plant-based natural fibres reinforcements in composites)
2.1.1 Hemp fibres
2.1.2 Flax fibres
2.1.3 Jute fibres
2.1.4 Kenaf fibres
2.1.4.1 Advantages of kenaf fibres
2.1.5 Date palm fibres
2.1.6 Sisal fibres
2.1.7 Oil palm fibres
2.1.8 Banana fibres
2.2 Influence of processing and chemical composition on the properties
2.2.1 Importance of fibre processing parameters
2.2.2 Chemical composition and their influences on the properties
2.2.3 Cellulose structure
2.2.3.1 Cellulose
2.2.3.2 Hemicellulose
2.2.3.3 Lignin
2.3 Mechanical, physical and morphological characteristics of plant fibres
2.3.1 Morphological structure of natural fibres
2.3.1.1 Primary and secondary cell walls
2.3.1.2 Lumen
2.3.2 Effects of variable morphological structure and mechanical properties
2.4 Effects of variable morphology on properties
2.5 Physical and mechanical investigation of single fibres and fibre bundles
2.5.1 Importance of single fibre and fibre bundle properties
2.6 Summary
References
Further reading
3---Lightweight-composites--important-pr_2021_Sustainable-Composites-for-Lig
3. Lightweight composites, important properties and applications
3.1 Lightweight composite materials: requirements and their key features
3.1.1 Lightweight concept
3.1.2 Lightweight drives
3.1.3 Achieving lightweighting potentials
3.1.4 Lightweighting benefits
3.2 Important properties
3.2.1 Mechanical properties of biobased composites
3.2.1.1 Tensile properties
3.2.1.2 Flexural properties
3.2.1.3 Impact properties
Parameters influencing the impact damage characteristics of composites
3.2.1.4 Fatigue properties
3.2.1.5 Creep behaviour
3.3 Thermal stability of biobased composites
3.3.1 Thermal degradation and stability of biobased composites
3.3.2 Flammability behaviour
3.3.2.1 Parameters influencing cone calorimeter performance
3.3.2.2 Ways for improvement of fire properties of natural fibre reinforcements and composites
3.3.3 Thermal conductivity measurements
3.3.3.1 Ways improving the thermal conductivity of polymer matrix composites
3.4 Environmental effects (water absorption) and their influence in different properties
3.4.1 Moisture diffusion mechanisms in composites
3.4.2 Effects of moisture diffusion the mechanical properties
3.5 Numerical modelling of mechanical properties and damage behaviour of natural fibre-reinforced biobased composites
3.5.1 Background
3.5.2 Predicting mechanical and damage behaviour of natural fibres and composites
3.5.2.1 Finite element method
3.5.2.2 Boundary element method
3.5.2.3 Finite difference method
3.5.3 The prediction of static mechanical properties of composites using FEA
3.6 Applications of lightweight natural fibre composites
3.6.1 Automotive application (road vehicles and land transport)
3.6.2 Aerospace and related application
3.6.3 Marine applications
3.6.4 The building construction application
3.6.5 Other applications
3.7 Conclusions
References
4---Design--manufacturing-processes-and-the_2021_Sustainable-Composites-for-
4. Design, manufacturing processes and their effects on bio-composite properties
4.1 Introduction and context
4.2 Eco-design and sustainability (design for environment and design for manufacturing)
4.2.1 Eco-design
4.2.2 Sustainability
4.2.3 Design for environment
4.2.3.1 Materials
4.2.3.2 Production
4.2.3.3 Distribution
4.2.3.4 Use
4.2.3.5 Recovery
4.2.4 Design for manufacture
4.3 Manufacturing processes and their influences on properties of bio-composites
4.3.1 Hand and spray lay-ups
4.3.1.1 Hand lay-up
4.3.1.2 Spray lay-up
4.3.2 Vacuum bagging moulding
4.3.3 Injection moulding
4.3.4 Compression moulding
4.3.5 Vacuum resin infusion
4.3.6 Pre-impregnated resin
4.3.7 Extrusion
4.3.8 Resin transfer moulding
4.3.9 Automated fibre placement
4.3.10 Filament winding
4.3.11 Autoclave moulding
4.3.12 Out-of-autoclave moulding
4.3.12.1 Autoclave and out-of-autoclave curing processes
4.3.13 Additive manufacturing
4.3.14 Brief comparison among manufacturing processes
4.4 Key drivers for cleaner production or green manufacturing
4.5 Manufacturing defects
4.5.1 Microcracks and cracks
4.5.2 Temperature effects
4.5.3 Moisture absorption
4.5.4 Inclusions or contamination
4.5.5 Porosity (void or pores)
4.5.6 Other manufacturing defects
4.6 Conclusions
References
5---Testing-and-damage-characterisation-_2021_Sustainable-Composites-for-Lig
5. Testing and damage characterisation of biocomposite materials
5.1 Introduction and context
5.2 Testing methods for damage characterisation and their importance
5.2.1 Visual inspection or testing
5.2.2 Ultrasonic testing
5.2.3 Thermography testing
5.2.4 Radiography testing
5.2.5 Electromagnetic testing
5.2.6 Acoustic emission inspection
5.2.7 Acousto-ultrasonic testing
5.2.8 Shearography testing
5.2.9 Computed tomography scanning
5.2.10 X-ray micro-computed tomography examination
5.2.11 Scanning electron microscopy
5.3 Damage mechanisms and types (key factors for improving damage resistance)
5.3.1 Damage types and mechanisms
5.3.2 Failure or damage modes
5.3.3 Failure or damage mechanisms associated with FRP composites
5.3.4 Damage detection in FRP composite structures
5.3.5 Key factors for improving damage resistance
5.4 Characterisation of damage modes using destructive and non-destructive damage analysis techniques (SEM, X-ray micro CT, AE, ...
5.4.1 Categorisation of NDT methods for FRP composite materials
5.4.2 Contact versus non-contact techniques
5.4.3 Inspection type versus NDT methods
5.4.4 Physical behaviours and structural integrity
5.5 Experimental and numerical modelling of damage modes and mechanisms
5.5.1 Impact damage
5.5.2 Fatigue life model
5.5.3 Thermal effects
5.6 Conclusions
References
6---Sustainable-composites-and-technique_2021_Sustainable-Composites-for-Lig
6. Sustainable composites and techniques for property enhancement
6.1 The context of sustainability in composites (comparison of sustainability of biocomposites versus conventional composites t ...
6.2 Inherent properties of natural fibres of biocomposite materials
6.3 Improvement of reinforcements and matrices through various treatments and fillers
6.3.1 Fibre treatments
6.3.2 Chemical treatments
6.3.3 Physical treatments
6.3.4 Additive treatments
6.3.5 Biological treatments
6.4 Approaches towards overall property enhancement via hybridisation, pinning, stitching, among others
6.4.1 Stitching
6.4.2 Hybridisation
6.4.3 Pinning
6.4.4 Knitting
6.4.5 Weaving
6.4.6 Braiding
6.4.7 Tufting
6.5 Summary and further evaluation
6.6 Conclusion
References
7---Future-outlooks-and-challenges-of-sus_2021_Sustainable-Composites-for-Li
7. Future outlooks and challenges of sustainable lightweight composites
7.1 Journey of composite materials towards sustainability
7.2 Market outlook and supply chain scenario
7.3 Challenges of achieving properties for lightweight applications
7.3.1 Materials and manufacturing process
7.3.2 Recyclability and end-of- life option
7.3.3 Long-term durability
7.4 Future outlook
References
Further reading
Index_2021_Sustainable-Composites-for-Lightweight-Applications
Index
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
R
S
T
U
V
X