Steric and Stereoelectronic Effects in Organic Chemistry

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

In this second edition, the author has thoroughly updated each chapter and expanded the content with addition of three new chapters. This book comments on several key aspects of stereochemical control of organic reactions in measured detail to allow the reader easily grasp these concepts. In addition, emphasis is given to key information and important aspects of steric and stereoelectronic effects and their control on conformational profile and reactivity features. This book is not only an indispensable resource for advanced undergraduate and graduate students studying the stereochemical aspects of organic reactions, but also a good reference book for all organic chemists in both industry and academia.

Author(s): Veejendra K. Yadav
Edition: 2
Publisher: Springer
Year: 2021

Language: English
Pages: 279
City: Cham

Preface to the Second Edition
Summary of Second Revised Edition
Contents
About the Author
1 Steric and Stereoelectronic Control of Molecular Structures and Organic Reactions
1 Influence of Steric Effects on Structures
2 Influence of Stereoelectronic Effects on Reactions
3 Evaluation of the Numerical Value of Anomeric Effect
4 Influence of Anomeric Effect on Conformational Preferences
5 Influence of Anomeric Effect on Conformational Reactivity
6 Conformations of Mono and Dithioacetals
7 Conformations of Mono and Diazaacetals
8 Antiperiplanar Effects Arising from C–Si, C–Ge, C–Sn, and C–Hg Bonds
References
2 Reactions on Saturated and Unsaturated Carbons
1 Inter- and Intramolecular Reactions on Saturated Carbons
2 Intermolecular Reactions of Epoxides
3 Intramolecular Reactions of Epoxides
4 Baldwin Rules for Ring Closure on Saturated and Unsaturated Carbons
5 SN2′ Reaction (Reaction on Unsaturated Carbon)
6 SN2 Reaction of Cyclopropane Activated by Two Geminal Carbonyl Groups
7 Reactions Involving Consecutive Intramolecular SN2 Reactions Leading to Rearrangement
8 Dual Activation for Skeletal Rearrangement
9 Solvolysis with Neighboring Group Participation
10 Rearrangement Originating from Oxirane Under Lewis Acid Condition
11 Rearrangement via Classical Versus Nonclassical Carbocations
12 Tandem Skeletal Changes and Polyene Cyclization
13 Application of 5-Exo-Trig Cyclization Rule
14 Stereocontrol in Multi-cyclization Reactions
15 Reaction on sp Carbons
16 Stereoelectronic Control in Beckmann Rearrangement
17 Stereoelectronic Control in Curtius Rearrangement
References
3 Diastereoselectivity in Organic Reactions
1 Introduction
2 Cram’s Model for Asymmetric Synthesis
3 Anh–Felkin Modification of Cram’s Model for Asymmetric Synthesis
4 Cieplak’s Model for Diastereoselectivity
5 Houk’s Transition State and Electrostatic Models for Diastereoselectivity
6 Cation Coordination Model (σ → π* Model) for Diastereoselectivity
5-Aza-2-Adamantanone, 18
N-Methyl-5-Aza-2-Adamantanone, 19
5-Aza-2-Adamantanone N-Oxide, 20
5-Bora-2-Adamantanone, 21
2,3-Endo,Endo-Dimethylnorbornan-7-One and the Corresponding Diethyl Analog
4-Oxatricyclo[5.2.1.02,6]Decan-10-One, 9, and 4-Oxatricyclo[5.2.1.02,6]Dec-8-En-10-One, 10
Trans-2-Heterobicyclo[4.4.0]Decan-5-Ones
3-Halocyclohexanones
References
4 A(1,2) and A(1,3) Strains
1 Introduction
2 A(1,2) Strain
3 Stereocontrol in Reactions on Account of A(1,2) Strain
4 A(1,3) Strain
5 Stereocontrol in Reactions on Account of A(1,3) Strain
6 A(1,3) Strain in Amides and Its Consequences on Diastereoselectivity
References
5 The Conservation of Orbital Symmetry Rules (Woodward–Hoffmann Rules)
1 Introduction
2 Orbitals and Symmetry Considerations
3 π2 + π2 Reaction
4 Electrocyclic Ring Closure and Ring Opening Reactions
1,3-Butadiene → Cyclobutene
1,3,5-Hexatriene → 1,3-Cyclohexadiene
5 Diels–Alder Cycloaddition Reaction (π4 + π2 Reaction)
References
6 The Overlap Component of the Stereoelectronic Effect vis-à-vis the Conservation of Orbital Symmetry Rules
1 Introduction
2 Steric Effects in the Thermal Fragmentation of cis-3,6-Dimethyl-3,6-Dihydropyridazine
3 Orbital Overlap Effects in the Thermal Fragmentation of Cyclopropanated and Cyclobuanated cis-3,6-Dimethyl-3,6-Dihydropyridazine
4 Orbital Overlap Effects in [1,5] Sigmatropic Shifts
5 Difficulties Experienced with [1,5]-Sigmatropic in the Cyclobutanated Species
References
7 Torquoselectivity of Conrotatory Ring Opening in 3-Substituted Cyclobutenes
1 Activation Barrier Approach to Torquoselectivity
2 TS-NBO Approach to Torquoselectivity
3 Restricted Conformational Effects on Torquoselectivity
4 Global Conformational Effects on Torquoselectivity
References
8 Hammett Substituent Constants
1 Hammett Substituent Constants for Benzoic Acids (σm and σp)
2 Hammett Substituent Constants for Phenylacetic and 3-Arylpropionic Acids
3 Hammett Substituent Constants and Free Energy Assessment
4 Hammett Substituent Constants and Reaction Pathway Relationship
5 Hammett Substituent Constants σ+ and σ−
6 Hammett Substituent Constants and Ester Hydrolysis Mechanism
References
9 Relative Aromaticity of Pyrrole, Furan, Thiophene and Selenophene, and Their Diels–Alder Stereoselectivity
1 Introduction
2 Heteroatom Lone Pair Interaction with Ring π Bonds in the Ground State
3 DA Reactions of Pyrrole, Furan, Thiophene, and Selenophene with MA
4 DA Reactions of Cyclopentadiene, Silole, and Germole with MA
5 DA Reactions of Cyclopentadiene, Silole, and Germole with Acetylene-1,2-Bisnitrile and Acetylene
6 DA Reactions of 1,3-Cyclohexadiene and 1,3-Cycloheptadiene with MA
7 DA Reactions of 1,3-Cyclohexadiene and 1,3-Cycloheptadiene with Acetylene-1,2-Bisnitrile and Acetylene
8 DA Reactions of 1,3-Cyclohexadiene and 1,3-Cyclooctadiene-6-Yne with Acetylene-1,2-Bisnitrile and Acetylene
9 Evaluation of Allylic Interaction in DA Reactions of Acyclic Dienes
10 DA Reactions of 6-Oxa-, 6-Aza-, 6-Thia-, and 6-Selena-1,3-Cycloheptadienes with MA
11 DA Reactions of 2,3-Cyclopropano-, 2,3-Cyclobutano-, and 2,3-Cyclopentano-6-Oxa-1,3-Cycloheptadienes with MA
12 DA Reactions of Benzene, Pyridine, and 1,4-Diazine with Acetylene-1,2-Bisnitrile and Acetylene
13 DA Reactions of Naphthalene, 1-Azanaphthalene, and 1,4-Diazanaphthalene with Cyclopropene
14 DA Reactions of Anthracene, 9-Azaanthracene, and 9,10-Diazaanthracene with Cyclopropene
15 DA Reactions of Benzene, Naphthalene, and Anthracene with Acetylene-1,2-Bisnitrile
16 Deformation Energy Considerations in DA Reactions of Five-Membered Heterocycles with Acetylene-1,2-Bisnitrile
17 DA Reactions of Thiophene 1,1-Dioxide with MA
18 Reaction Profile and Solvent Effects on Diastereoselectivity of DA Reactions of Five-Membered Heterocycles with MA
References
10 Miscellaneous
1 Spiroconjugation
2 Periselectivity
3 Ambident Nucleophiles
4 Ambident Electrophiles
α,β-Unsaturated Carbonyl Compounds
Aromatic Electrophiles
Unsymmetrical Anhydrides
Arynes
5 α-Effect
6 Carbenes
7 Hammond Postulate
8 Curtin–Hammett Principle
9 Diastereotopic, Homotopic, and Enantiotopic Substituents
10 Captodative Effect
References
Questions