Space Weather Impact on GNSS Performance

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This book addresses problems of GNSS performance support under geomagnetic storms and solar radio bursts. It analyses both physical and radio-engineering sources of GNSS performance deterioration caused by geomagnetic storms, solar radio bursts and peculiarities of the polar and equatorial ionosphere. The book takes into consideration both standalone GNSS and differential GNSS. Based on experimental data analysis, it presents a systematic approach to maintaining reliable GNSS performance despite the Space Weather impacts.
Given its scope, the book offers a valuable resource for GNSS users and equipment developers, as well as researchers and students whose work involves GNSS remote sensing, surveying, navigation, and related disciplines.

Author(s): Vladislav Demyanov, Yury Yasyukevich, Maria A. Sergeeva, Artem Vesnin
Publisher: Springer
Year: 2022

Language: English
Pages: 375
City: Cham

Contents
Abbreviations
1 Introduction
References
2 GNSS Overview
2.1 GPS, GLONASS, BDS, and Galileo
2.1.1 GNSS Operation Control Segment
2.1.2 Satellite Constellations and Signals
2.1.3 User Receiver
2.2 Main Error Sources in Ranging and Positioning
2.2.1 Code-Pseudo-Range and Carrier Phase Errors
2.2.2 User Positioning Errors
2.2.3 Intersystem Biases
2.3 Differential GNSS
2.3.1 General Notions of Differential Navigation Mode
2.3.2 Local-Area Augmentation System (LAAS)
2.3.3 Wide-Area Augmentation Systems
2.3.4 Real Time Kinematic and Precise Point Positioning
2.4 Common and Specific Requirements for GNSS Positioning
2.5 Main Problems and Trends in Up-To-Date GNSS
References
3 Space Weather General Concepts
3.1 Brief Introduction to Phenomena Related to Space Weather
3.2 Introduction to the Sources and Main Characteristics of Solar Radio Bursts
3.3 Space Weather Conditions
3.4 Space Weather Parameters
3.5 Geomagnetic Disturbances
3.6 General Concepts of the Ionosphere Principles
3.7 High-Latitude Ionosphere
3.8 Low-Latitude Ionosphere
3.9 Overview on the Ionospheric Indices
3.10 SW Disturbance Consequences
3.11 Space Weather as a Natural Hazard
3.12 Space Weather Initiatives
3.12.1 What Can Be Done?
3.12.2 National Space Weather Services
3.12.3 Collaborative Efforts
References
4 Methodology for GNSS Capability Analysis
4.1 Total Electron Content in the Ionosphere
4.2 GNSS Data Processing
4.2.1 GNSS Receiver Networks
4.2.2 RINEX: GNSS Data Storage Format
4.2.3 Preprocessing TEC Pseudo-Range and Phase Measurements
4.2.4 Variation Selection in the Data of Dual-Frequency Phase TEC Measurements
4.3 Indices to Evaluate the State of the Ionosphere
4.3.1 Ionospheric TEC-Based Indices
4.3.2 Indices for Phase and Amplitude Ionospheric Scintillations
4.3.3 GNSS Phase Second-Order Derivative as an Ionospheric Index
Appendix 4.1
References
5 Experimental Results of GNSS/SBAS Performance Under Space Weather Impacts
5.1 Solar Radio Burst Impact on GNSS
5.1.1 Solar Radio Flux as an Electromagnetic Jammer
5.1.2 Impact on Standalone GNSS
5.1.3 Impact on Differential GNSS
5.2 Magnetic Storm Impact on GNSS
5.2.1 Positioning Dilution of Precision and Positioning Accuracy During Geomagnetic Storm
5.2.2 WAAS Alerts and GNSS Positioning Quality Under Geomagnetic Storm Condition
5.3 Effects of Ionospheric Irregularities on GNSS
5.3.1 Ionospheric Scintillation and Ranging Quality
5.3.2 Ionospheric Super-Bubble Effects on GPS Performance
5.3.3 Auroral Oval and GNSS Positioning Errors
References
6 Real-Time Data Assimilation for Space Weather Effects Mitigation on GNSS/SBAS
6.1 Introduction Remarks
6.2 GIRO—Global Ionospheric Radio Observatory
6.3 Real-Time Data Assimilation Approaches
6.4 GAMBIT—Global Assimilative Model of Bottomside Ionosphere Timeline
6.4.1 GAMBIT Description
6.4.2 From Climate to Weather Representation
6.5 Factors Affecting GNSS Positioning Accuracy
6.5.1 Instrumental Approaches to Improve Positioning
6.5.2 Spatial and Temporal of Factors that Affect GNSS Positioning
6.6 Conclusions
References
7 How to Improve GNSS/SBAS Reliability Under Space Weather Impacts: Analysis
7.1 Fore- and Nowcasting GNSS Performance Quality Under Geomagnetic Storm Conditions
7.2 Alerts to a Geomagnetic Disturbance in the Radio Wave Propagation Medium
7.3 Alerts in Case of Powerful L-band Solar Radio Bursts
7.4 CNR Power Improvement in Satellite Communication Links
7.5 Code and Phase Tracking Loop Tuning
7.6 WAAS Improvement Under Space Weather Impact
References