Solid Waste Engineering and Management: Volume 2

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This book is the second volume in a three-volume set on Solid Waste Engineering and Management. It focuses on sustainability, single waste stream processing, material recovery, plastic waste, marine litter, sludge disposal, restaurant waste recycling, sanitary landfills, landfill leachate collection, and landfill aftercare as it pertains to solid waste management. The volumes comprehensively discuss various contemporary issues associated with solid waste pollution management, impacts on the environment and vulnerable human populations, and solutions to these problems. 

Author(s): Lawrence K. Wang, Mu-Hao Sung Wang, Yung-Tse Hung
Series: Handbook of Environmental Engineering, 24
Publisher: Springer
Year: 2022

Language: English
Pages: 740
City: Cham

Preface
Contents
About the Editors
Contributors
Chapter 1: Sustainable Solid Waste Management
1.1 Introduction
1.2 Municipal Solid Waste
1.2.1 Municipal Solid Waste Generation
1.2.2 Sources and Classification of Solid Waste
1.2.3 Composition of Municipal Solid Waste
1.2.4 Improper Disposal of Municipal Solid Waste
1.3 Sustainable Solid Waste Management
1.3.1 Definition of Sustainability
Environment Pillar
Social Pillar
Economic Pillar
1.3.2 Definition of Solid Waste
1.3.3 Definition of Solid Waste Management
1.3.4 Sustainability Indicators in Solid Waste Management
Environmental Indicators
Economic Indicators
Social Indicators
Brief Summary
1.3.5 Interlinkage Solid Waste Management and Sustainable Development Goals
SDG 1 – No Poverty
SDG 2 – Zero Hunger
SDG 3 – Good Health and Well Being
SDG 4 – Quality Education
SDG 5 – Gender Equality
SDG 6 – Clean Water and Sanitation
SDG 7 – Affordable and Clean Energy
SDG 8 – Decent Work and Economic Growth
SDG 9 – Industry, Innovation, and Infrastructure
SDG 10 – Reduce Inequalities
SDG 11 – Sustainable Cities and Communities
SDG 12 – Responsible Consumption and Production
SDG 13 – Climate Change
SDG 14 – Life Below Water
SDG 15 – Life on Land
SDG 16 – Peace, Justice, and Strong Institutions
SDG 17 – Partnerships for the Goals
1.3.6 Solid Waste Management Value Chain
Collection
Transportation
Utilization
Disposal
1.4 Integrated Municipal Solid Waste Management
1.4.1 Integrated Solid Waste Management Framework
Physical Components
Governance Components
1.4.2 Components of Integrated Waste Management System
1.4.3 Solid Waste Management Hierarchy
1.4.4 Integrated Solid Waste Management System
1.5 Solid Waste Handling
1.5.1 Waste Collection
Collection Point
Collection Frequency
Storage Containers
Collection Personnel
Collection Route
Transfer Station
1.5.2 Waste Storage
1.5.3 Transfer Station
Types of Stations According to the Sizes
Types of Transfer Stations According to Categories
Transfer Station Capacity
1.5.4 Waste Collection System Design
1.5.5 Waste Transportation
Transfer Station and Transfer
1.5.6 Composting
Open Aerated Composting Systems
Contained Composting Systems
1.5.7 Waste Disposal
Incineration
Landfilling
1.6 Social–Economical Aspects of Solid Waste Management
1.7 Conclusion
References
Glossary
Chapter 2: Single Waste Stream Processing and Material Recovery Facility (MRF)
2.1 Material Recovery Facility (MRF) Description
2.1.1 Introduction to MRF
2.1.2 Types of MRF and the Unit Operation for Waste Processing
2.1.3 MRF Flow Sequences and Sorting Technology
2.1.4 Introduction to Single-Stream MRF and Mixed Waste MRF
2.1.5 Introduction to PreSorted
2.1.6 Introduction to Dual-Stream MRF
2.1.7 Details Process Flow of Single-Stream MRF
Preliminary Steps in Receiving Waste
Metering Flow of Materials Through the Conveyor
Paper Recovery Process
Glass Recovery in Process
Ferrous Recovery for Aluminum and Metals
Sorting Plastic Containers
Design for Sorting Technique (Automated Versus Manual)
Densification or Compaction
Storing and Balling of End Product
2.2 Advantages and Disadvantages of Single-Stream MRF
2.2.1 Advantages of Single-Stream MRF
2.2.2 Disadvantages of Single-Stream MRF
2.2.3 Case Studies
2.3 Factors Affecting Single-Stream MRF Efficiency
2.3.1 Factors Affecting MRF to Production
Quality of Materials Sorted
Range of Materials in MRF and Sorting Level
Manual Versus Automated Sorting Technique
Level of Residues and Degree of Contamination
2.3.2 Factors Influencing Sustainable Recycling of Municipal Solid Waste
Site Selection
Nature of The Waste Generators and Waste Collection Method
Amount and Quality of Household Waste Generation
Effect of Moisture Contents on the Recycling
2.3.3 Environmental Impact Evaluation for MRF and SSR
2.3.4 Sustainable Development in Materials Recovery Facilities (MRF)
2.4 Economic Evaluation and Life Cycle Assessment of Single-Stream MRF
2.4.1 Single-Stream MRF Design and Material Composition
2.4.2 Economic Evaluation
2.4.3 Life Cycle Assessment
2.4.4 General LCA Implication on Waste Management System
Case Study Comparison of Different Practice in Waste Management System
Goal and Scope
Inventory Analysis
Impact Assessment
Interpretation of LCA Result
2.4.5 Manual Calculation for LCA of MRF
2.4.6 Case Studies of Economic Evaluation and Life Cycle Inventory Between Dual and Single MRF
2.5 Conclusion and Recommendation
References
Glossary
Chapter 3: Construction and Demolition (C&D) Waste Management and Disposal
3.1 Introduction
3.2 Municipal Solid Waste (MSW) Management
3.3 Construction and Demolition Waste
3.3.1 Characterization of Construction Waste
3.3.2 Characterization of Brick Waste
3.3.3 Characterization of Tile Wastes
3.3.4 The Causes of Construction Waste
3.3.5 Waste Causal Factor
3.3.6 Waste Quantity
3.3.7 Factors Influencing Generation of Construction Waste
3.3.8 Labor Productivity and Waste Generated
3.3.9 Effect of Age and Workers’ Experience on Labor Productivity
3.3.10 Management Issues in Waste Generated
3.4 Construction and Demolition Waste Management
3.4.1 Waste Management Hierarchy in Waste Management
(a) Implementing 3R Concept for Waste Disposal (Reduce, Reuse and Recycle)
(b) Sources Reduction and Reuse in Waste Management
(c) Reuse of Existing Materials
(d) Recycling and Composting Principles
(e) Energy Recovery in Waste Management
(f) Treatment and Disposal Method
3.4.2 Waste Minimization in Construction Sites
(a) Construction Waste Minimization Strategy
(b) The Need for Waste Minimization
(c) Building Information Modeling (BIM) in Waste Minimization
3.4.3 Code of Practices in Solid Waste Management
(a) National Solid Waste Management Department (NSWMD) in Malaysia
(b) Solid Waste and Public Cleansing Management Corporation (SWCORP)
3.5 Disposal of Construction and Demolition Waste
3.6 Dive into Reality of Construction Waste Generation
3.7 Conclusion
Glossary
References
Chapter 4: Recovery of Plastic Waste
4.1 History of Plastic
4.2 Plastic Production and Environmental Concern
4.3 Types of Plastic
4.4 Additives in Plastic
4.5 Properties of Plastic
4.5.1 Physical and Mechanical Properties of Plastics
4.5.2 Chemical Properties of Plastics
4.6 Future Perspective of Plastic Waste Treatment Through Recycling and Recovery
4.7 Mechanical Recycling
4.7.1 Plastic in Concrete
Density
Workability
Compressive Strength
Water Adsorption
Flexural Strength
Modulus of Elasticity
Thermal Conductivity, Heat Capacity, and Thermal Diffusivity
Ultrasonic Pulse Velocity, Permeability, and Salt Migration
4.7.2 Plastic in Road Construction
Dry Density
Moisture Content
Water Adsorption
Penetration, Viscosity, and Softening Value
Compressive Strength
Deformability Index, Ductility, and Resilient Modulus
Marshall Stability
Hydraulic Conductivity
4.7.3 Plastic in Soil Treatment
Plastic as Soil Stabilizer
Plastic as Soil Liner
4.8 Energy Recovery
4.8.1 Combustion/Incineration Technologies
4.8.2 Factors Affecting Energy Recovery
Heating Values
Temperature and Pressure of Boiler
4.9 Chemical Recovery
4.9.1 Chemolysis
Methanolysis
Glycolysis
Hydrolysis
Ammonolysis and Aminolysis
Hydrogenation
4.9.2 Thermolysis
Hydrothermal
Gasification
Pyrolysis/Cracking
Thermal Cracking
Catalytic Cracking
Hydrocracking
4.10 Conclusion
Glossary
References
Chapter 5: Solid Waste and Marine Litter Management
5.1 Introduction to Marine Waste and Litter
5.2 Types and Amount of Marine Litter
5.2.1 Floating Litter
5.2.2 Sunken Litter
5.3 Sources and Distribution of Marine Litter
5.3.1 Sea-Based Litter
5.3.2 Land-Based Litter
5.3.3 Ocean Gyre
5.4 Guideline for Marine Litter
5.4.1 Beach Litter Sampling
5.4.2 Benthic Litter Sampling
5.4.3 Floating Litter Sampling
5.5 Microplastics and the Marine Environment
5.6 Post COVID-19 Situation on Marine Litter Trend
5.7 Regulations on Ocean Dumping for Marine Environment Protection
5.7.1 Marine Protection, Research, and Sanctuaries Act (1972): United States
5.7.2 London Convention (1972) and London Protocol (1996)
5.7.3 Marine Environmental Governance Policy of China
5.7.4 Environment Protection (Sea Dumping) Act 1981: Australia
5.8 Conclusion
Glossary
References
Chapter 6: Sewage Sludge Recycling and Disposal
6.1 Sewage Sludge
6.1.1 Source of Sewage Sludge
6.1.2 Production of Sewage Sludge
6.1.3 Properties of Sewage Sludge
Chemical Composition
Nutrients
Heavy Metals in Sewage Sludge
Mineralogy in Sewage Sludge
Surface Morphology of Sewage Sludge
Physical Characteristics
Geotechnical Properties
Mechanical Properties
6.1.4 Classification of Sewage Sludge
6.2 Treatment and Disposal of Sewage Sludge
6.2.1 Prevention
6.2.2 Reuse and Recycling
Land Application
Composting
Thermal Treatment
Cement Replacement
Landfill Cover
6.2.3 Recovery
6.2.4 Disposal
Ocean Dumping
Landfilling
6.3 Recycling of Sewage Sludge for Landfill Cover Application
6.3.1 Overview of Landfill and Landfill Cover
6.3.2 Requirement of Landfill Cover
Hydraulic Conductivity
Strength
Durability
Chemical Contamination/Leachability
6.4 Modifying Agent
6.4.1 Red Gypsum
6.4.2 Lime
6.4.3 Fly Ash
6.4.4 Ground Granulated Blast Slag
6.4.5 Silica Fume
6.5 Role of Modifying Agent
6.5.1 Binder
Hydraulic Binder
Pozzolans
6.5.2 Aggregate
Types of Aggregate
Properties of Aggregate
6.5.3 Filler
Types of Fillers
Properties of Fillers
6.6 Effect of Mixing Composition Ratio on Sewage Sludge Performance
6.6.1 Optimum Design Mix
6.6.2 Optimum Moisture Content
6.6.3 Plasticity
6.6.4 Hydraulic Conductivity
6.6.5 Compressive Strength
Strength Formation
Role of Ca:Si
6.6.6 Environmental Impact
Sewage Sludge Mobility
Effect of compaction on leaching
Effect of Compaction on Other Properties
6.7 Conclusion
Glossary
References
Chapter 7: Restaurant Waste Recycle and Disposal
7.1 Introduction
7.1.1 Municipal Solid Wastes (MSW)
7.1.2 Restaurant Waste
7.2 Sources, Composition, and Characteristic of Restaurant Waste
7.2.1 Sources of Restaurant Wastes
Overproducing food
Trimming
Immoderate Food Displays
Incorrect/Oversized Portion Sizing
7.2.2 Composition and Characteristic of Restaurant Waste
7.3 Environmental Policy, Law and Regulation of Food Waste
7.3.1 Policy and Regulation of Food Waste in Selected Asian Countries
7.4 Management and Recycling of Restaurant Waste
7.4.1 Recycling, Reuse, and Waste Reduction in the Restaurant Industry
7.4.2 Recycling of Food Waste for Animal Feeding
7.4.3 Food Waste Composting for Resource Recovery
7.4.4 Valorization of Food Waste into Biogas
7.4.5 Food Waste Recycling into Biobased Chemical Building Block
7.5 Disposal of Restaurant Waste from Global Warming Point of View
7.6 Case Studies of Restaurant Waste Treatment
7.6.1 Direct Production of Lactic Acid by Simultaneous Saccharification and Fermentation (SSF): A Case Study from a Mixed Restaurant Food Waste in ATB Potsdam, Germany
7.6.2 Food Waste Conversion into Potential Biorefinery Products: A Case Study from Restaurants in Monastiraki Square and Plaka, Athens, Greece
7.6.3 Restaurant Waste Treatment and Management on Board Cruise Ships in International Waters
7.7 Conclusion
Glossary
References
Chapter 8: Sanitary Landfill Types and Design
8.1 Introduction
8.2 Classification of Sanitary Landfill
8.3 Sanitary Landfill
8.3.1 Sanitary Landfill Life Cycle
8.3.2 Sanitary Landfill Impact
Air Pollution and Atmospheric
Groundwater Pollution
Soil and Land Pollution
Landfill Fires
8.3.3 Advantages and Disadvantages of a Sanitary Landfill
8.4 Sanitary Landfill Design
8.4.1 Site Selection
8.4.2 Landfill Liners
8.4.3 Sanitary Landfilling Method
8.4.4 Cell Arrangement
8.4.5 Landfill Cover System
8.4.6 Land Area and Landfill Capacity Requirement
8.4.7 Erosion Control by the Slope’s Design
8.4.8 Vegetation
8.4.9 Landfill Closure
8.4.10 Storm Water Management
8.4.11 Leachate and Gas Management
8.5 Future Use of the Sanitary Landfill
Glossary
References
Chapter 9: Landfill Leachate Collection and Characterization
9.1 Introduction
9.2 Leachate Generation and Model Prediction
9.2.1 Hydrological Evaluation of Landfill Performance (HELP)
9.2.2 Water Balance
9.3 Leachate Collection Systems
9.3.1 Leachate Collection System Design
Design Considerations
Collection Pipes
Bottom Pipes
Inclined Pipes
Vertical Pipes
Retention Pits and Valve
Design Criteria and Equations
9.3.2 Design Flow and Cross-Sectional Area
Design Flow
Rainfall Intensity and Coefficient of Discharge
Cross-Sectional Area
9.3.3 Clogging and Failure in Leachate Collection Systems
Mechanical Damages
Clogging in Drainage Pipes and Drainage Layer
9.3.4 Case Studies on Clogging in Landfill Leachate Collection System
9.3.5 General Recommendations on Design and Materials
9.4 Leachate Characteristics and Quality
9.4.1 Case Studies on Leachate Quality and Characterization
9.4.2 Analytical Techniques and Methods Used for Leachate Characterization
9.5 Leachate Recirculation
9.5.1 History and Definition of a Leachate Recirculation System
9.5.2 Objectives and Purposes of a Leachate Recirculation System
9.5.3 General Effects of a Leachate Recirculation System
9.5.4 Leachate Recirculation Conceptual Design
Balancing of Seasonal Flow for Leachate (Normally 5–10 L per ton)
Gas Generation (Stimulation; 100–200 L/ton)
Contaminant Flushing (3000 L/ton)
9.5.5 Leachate Recirculation Systems
9.5.6 Operational Issues and Management in Leachate Recirculation Systems
Reduction and Clogging in the Performance of Injection Infrastructure
The Need for Leachate Treatment Prior to Reinjection
Flooding of Gas Wells
Daily Cover
Effect of Settlement
Clogging of a Basal Drainage Layer
Obtaining Sufficient Volumes for Leachate Recirculation
Slope Instability
9.5.7 Case Studies Involving Leachate Recirculation
Conceptual Design of the Model
Analysis of Leachate Flow and Slope Stability
Summaryspiepr Sec47
The Influence of Leachate Recirculation Ratio on Food Waste Degradation in Two-Phase Anaerobic Digestion Integrated System (Case Study)
Background
The Influence on Solubilization and Hydrolysis in LBR
Leachate Recirculation Assessment with the Addition of Cellulase to Improve Waste Bio-stabilization and the Production of Gas (Case Study)
Methodology
Benefits Associated with the Addition of Enzymes to an Existing Leachate Recirculation Operation
Tangible Costs
Tangible Benefits
9.6 Conclusions
References
Glossary
Chapter 10: Landfill After-Care Management Plan
10.1 Introduction
10.2 Definition
10.3 Landfill Technology
10.3.1 Introduction
10.3.2 Landfills in the World
10.3.3 Categories of Landfill
10.3.4 Lifespan of Landfill
10.3.5 Landfilling Process
Introduction
Landfilling Method
Area Method
Trench Method
Depression Method
Potential Environmental Effects and General Concerns
10.4 Management Phases of Landfill
10.5 Landfill Control Facilities
10.5.1 Control Mechanism at the Landfill
10.5.2 Monitoring Protocols at the Landfill
Monitoring the Buried Waste
Leachate and Discharged Water Monitoring
Groundwater Monitoring
The Number and Location of Monitoring Wells
Monitoring Parameters and Frequency
Monitoring of Gas Generation
Monitoring of Bad Odors
Surveillance of the Surrounding Environment
Future Planning Monitoring
Safety Precautions
10.6 After-care Legislation and Management
10.6.1 Legislative Aspects and Directives
10.6.2 Post-closure Management
10.7 Methods for Evaluating Landfill After-Care Completion Phase
10.7.1 Method 1: After-Care Evaluation Through Target Values
10.7.2 Method 2: After-Care Evaluation Using Impact/Risk Assessment
10.7.3 Method 3: After-Care Evaluation Through Performance-Based System
10.8 Different Countries Regulatory Procedures for After-Care Completion
10.8.1 Austria
10.8.2 Canada
10.8.3 England
10.8.4 France
10.8.5 Germany
10.8.6 Japan
10.8.7 The Netherlands
10.8.8 Practical Examples/Case Study
Austria-Breitenau Landfill
France-Etueffont Landfill
Vietnam-Go Cat Landfill, Ho Chi Minh City
10.9 Economic Aspects of Landfill After-Care
10.10 Conclusion and Summary
Glossary
References
Index