Soil Health and Environmental Sustainability: Application of Geospatial Technology

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This book demonstrates the measurement, monitoring, mapping and modelling of soil pollution and land resources. This book explores state-of-the-art techniques based on open sources software & R statistical programming and modelling in modern geo-computation techniques specifically focusing on the recent trends in data mining/machine learning techniques and robust modelling in soil resources.
Soil and agricultural systems are an integral part of the global environment and human well‐being, providing multiple goods and services essential for people worldwide and crucial for sustainable development. Soil contamination is an environmental hazard and has become a big issue related to environmental health. The challenge of the twenty-first century is to reduce the contaminant load and bring it to below permissible level. The contamination is not only a problem affecting local environments at the place of occurrence but also spreading to other regions because of easy transportation of pollutants. This leads to direct and indirect contamination of land and aquatic systems, surface water and groundwater, inducing significant risks for natural ecosystems. 
In this context, the spatial modelling, prediction, efficient use, risk assessment, protection and management of soil resources in the agriculture system are the key to achieving sustainable development goals and ensuring the promotion of an economically, socially and environmental sustainability future. The aim of this book on soil contaminants and environmental health: application of geospatial technology is to identify the soil and sediment quality, sources of contaminants and risk assessment and focuses on the decision-making and planning point of view through GIS data management techniques.
This book covers major topics such as spatial modelling in soil and sediments pollution and remediation; radioactive wastes, microbiology of soil and sediments, soil salinity and sodicity, pollution from landfill sites, soil erosion and contamination from agricultural activities, heavy metal pollution and health risk; environmental impact and risk assessment, sustainable land use, landscape management and governance, soil degradation and risk assessment, agricultural soil pollution, pollution due to urban activities, soil pollution by industrial effluents and solid wastes, pollution control and mitigation in extreme environments. The content of this book is of interest to researchers, professionals and policy-makers whose work is in soil science and agriculture practices. The book equips with the knowledge and skills to tackle a wide range of issues manifested in geographic data, including those with scientific, societal and environmental implications.


Author(s): Pravat Kumar Shit, Partha Pratim Adhikary, Gouri Sankar Bhunia, Debashish Sengupta
Series: Environmental Science and Engineering
Publisher: Springer
Year: 2022

Language: English
Pages: 731
City: Cham

Preface
Acknowledgments
Contents
Editors and Contributors
Part I Measurement, Monitoring and Mapping of Soil and Land Resources
1 Open-Source Satellite Repository and Geographic Information System (GIS) for Soil Resource Mapping
1.1 Introduction
1.2 Spectral Reflectance of the Soil
1.3 Commonly Used Open Satellite Data
1.3.1 Low Resolution Satellite Data
1.3.2 Moderate Resolution Satellite Data
1.3.3 High Resolution Satellite Data
1.4 Other Earth Resource Satellites
1.4.1 Hyperspectral Satellite Systems
1.4.2 Digital Elevation Model (DEM)
1.5 Open Sources for World Soil Information
1.5.1 Open Source GIS Packages and Software
1.6 Application of RS and GIS in Soil Resource Mapping
1.7 Conclusion
References
2 Applicability of Open Source Satellite Data and GIS for Soil Resources Inventorying and Monitoring
2.1 Introduction
2.2 Materials and Methods
2.2.1 Location and extent
2.2.2 Climate
2.2.3 Geomorphology
2.2.4 Geology
2.2.5 Drainage
2.2.6 Base Maps and Image Interpretation
2.2.7 Field Investigations
2.2.8 Laboratory Characterization of Soils
2.2.9 Finalization of Soil Map and Other Soil Characteristics Mapping Using GIS
2.3 Results and Discussion
2.3.1 Land Utilization/Land Use Land Cover Mapping
2.3.2 Landform Mapping
2.3.3 Soil and Soil Site Characteristics Mapping
2.4 Conclusion
References
3 Application of Discrete Element Method Simulation in Environmental Modeling
3.1 Introduction
3.2 Materials and Methods
3.2.1 Discrete Element Method
3.2.2 Simulation Setup
3.2.3 Soil Sample Preparation
3.3 Case Study
3.3.1 Effect of Tire Compaction on Soil
3.3.2 Effect of Vibro Compaction on the Soil
3.4 Conclusion
References
4 Geospatial Techniques and Methods for Sustainability in Agricultural Management
4.1 Introduction
4.2 Using Geospatial Techniques for Decision Making in Agriculture
4.3 Spatial Techniques in Agriculture: Data Acquisition
4.3.1 Crop Spatial Data
4.3.2 Detection and Mapping Techniques for Agricultural Soils
4.4 Geospatial Techniques in Agriculture: Data Treatment and Management zones
4.4.1 Classical Criteria for Identifying Management zones
4.4.2 Using Soil–Plant Spatial Relations to Identify Management zones
4.5 Conclusions
References
5 Soil and Vegetation in Pachmarhi Biosphere Reserve and Their Correlation
5.1 Introduction
References
6 Salt Affected Soils: Global Perspectives
6.1 Introduction
6.2 Global Distribution and Occurrence
6.3 Causes and Drivers for Salinization/Sodification
6.4 Definition and Characteristics of SAS
6.4.1 Saline Soil
6.4.2 Sodic Soil
6.5 Salt Affected Soils and Crop Production
6.6 Management Options
6.6.1 Agronomic Practices for Saline Soil
6.6.2 Subsurface Drainage (SSD) for Rehabilitation of Continental Saline Soil with a Shallow Water Table
6.6.3 Land Shaping Technology
6.6.4 Bio-Drainage
6.6.5 Gypsum and Alternate Reclamation Technology for Sodic Soil and Water
6.6.6 Crop Management and Salt-Tolerant Varieties
6.7 Economic Importance of Salt-Affected Soil World-Wise
6.8 Conclusions and Way Forward
References
7 Application of Remote Sensing and GIS Techniques in Assessment of Salt Affected Soils for Management in Large Scale Soil Survey
7.1 Introduction
7.2 Development of Salt-Affected Soils
7.3 Characterization and Identification of Salt-Affected Soils
7.4 Classification of Salt-Affected Soils
7.4.1 Saline Soils
7.4.2 Saline-Sodic Soils
7.4.3 Sodic Soils
7.4.4 Distribution of SAS
7.5 Soil Salinization
7.5.1 Types of Soil Salinity
7.5.2 Damage Caused by Soil Salinity
7.5.3 Socio-economic Impacts of Salinity
7.5.4 Visual Indicators of Soil Salinity
7.5.5 Field Assessment of Soil Salinity
7.5.6 Classes of Soil Salinity and Plant Growth
7.6 Soil Sodicity
7.6.1 Visual Indicators of Soil Sodicity
7.6.2 Field Assessment of Soil Sodicity
7.6.3 Laboratory Assessment of Soil Sodicity
7.6.4 Sodicity and Soil Structure
7.7 Remote Sensing for Soil Affected Soil Mapping
7.7.1 Remote Sensing Data
7.7.2 Methodology
7.7.3 Detection of Soil Salinity by Remote Sensing
7.7.4 Salinity Mapping and Monitoring
7.7.5 Delineation of Salt-Affected Soils in India
7.7.6 Constraints in Remote Sensing of SAS Mapping
7.8 Management of Salt Affected Soils Using Remote Sensing
7.9 Conclusion
References
8 Status and Challenges of Monitoring Soil Erosion in Croplands of Arid Regions
8.1 Introduction
8.2 Overview of Methods Used for Monitoring Runoff and Soil Erosion from Arable/Agricultural Lands
8.2.1 Assessment of Soil Erosion at Different Scales from Agricultural/Arable Land
8.2.2 Devices and Methods Used for Measurement or Estimation of Soil Erosion
8.3 Case Study of Soil Erosion Monitoring in an Indian Arid Region
8.3.1 Overview of Study Area
8.3.2 Methodology
8.3.3 Results and Discussion
8.3.4 Conclusions of the Case Study
8.4 Challenges and Issues in Regular Monitoring of Soil Erosion in Arid Climate
8.4.1 High Speed Winds
8.4.2 Infrequent Rainy Days and Runoff
8.4.3 Shallow Soil Thickness
8.4.4 Changing Rainfall Patterns Due to Climate Change
8.4.5 Unfavorable Soil Workability Conditions
8.5 Future Needs and Concluding Remarks
References
9 Application of RUSLE and MUSLE Models to Assess Erosion Sensitivity of a Sub-watershed Using ArcSWAT Interface
9.1 Introduction
9.2 Materials and Methods
9.2.1 Description of Study Area
9.3 Models
9.3.1 Revised Universal Soil Loss Equation
9.3.2 MUSLE Model
9.4 Methods Used to Estimate Various Model Parameters
9.4.1 Rainfall Erosivity Factor (R)
9.4.2 Soil Erodibility Factor (K)
9.4.3 Soil Erodibility Factor Computation
9.4.4 Slope Length Factor (L)
9.4.5 Unit Stream Power Erosion and Deposition (USPED) Model
9.4.6 Digital Elevation Model (DEM)
9.4.7 Slope Steepness Factor (S)
9.4.8 Cover Management Factor/Vegetative Cover Factor (C)
9.4.9 Land Use/Land Cover Map
9.4.10 Conservation/Support Practice Factor (P)
9.5 Gross Soil Erosion Estimation
9.6 Erosion Susceptibility Map
9.6.1 ArcSWAT: An ArcGIS Extension
9.7 Preparation of Arcswat Input Data
9.7.1 Land Use/Land Cover Database Input Files
9.7.2 Soil Database Input Files
9.7.3 ArcSWAT Weather Data Input Files
9.8 ArcSWAT Model Operation
9.8.1 SWAT Project Set-Up
9.8.2 Watershed Delineator
9.8.3 Hydrologic Response Unit (HRU) Analysis
9.8.4 Write Input Tables
9.8.5 Edit SWAT Input
9.8.6 SWAT Simulation
9.8.7 SWAT Model Calibration
9.8.8 Collection of Suspended Sediment Samples
9.8.9 Sediment Concentration
9.8.10 SWAT Model Validation
9.8.11 Model Evaluation Statistics
9.8.12 Sediment Delivery Ratio
9.9 Results and Discussion
9.9.1 Components of RUSLE Model
9.9.2 Soil Erodibility Factor (K)
9.9.3 Crop/Cover Management Factor (C)
9.9.4 Gross Soil Erosion Using RUSLE Model
9.9.5 SWAT Model Simulation Results
9.10 Conclusion
References
10 Delineation of Irrigation Management Zones Using Geographical Weighted Principal Component Analysis and Possibilistic Fuzzy C-Means Clustering Approach
10.1 Introduction
10.2 Materials and Methods
10.2.1 Site Description
10.2.2 Soil Sampling and Analysis
10.2.3 Descriptive and Geostatistical Analysis
10.2.4 Principal Components Analysis and Fuzzy Clustering
10.3 Results and Discussion
10.3.1 Descriptive Statistics of Soil Hydro-Physical Properties
10.3.2 Relationship Among Soil Hydro-Physical Properties
10.3.3 Geostatistical Interpolation
10.3.4 Determining Clustering Variables for Irrigation Management Zones
10.3.5 Delineating Irrigation Management Zones
10.3.6 Application of IMZ Results
10.4 Conclusions
References
Part II Geospatial Modeling and Risk Assessment
11 Soil Quality Assessment: Integrated Study on Standard Scoring Functions and Geospatial Approach
11.1 Introduction
11.2 Materials and Methods
11.2.1 Site Description
11.2.2 Field and Laboratory Procedures
11.2.3 Integrated Quality Index (IQI) and Weight Assignment
11.2.4 Spatial Variability of an Integrated Quality Index (IQI)
11.3 Results and Discussion
11.3.1 Indicators Among Different Depths
11.3.2 Minimum Data Set Selection
11.3.3 Weight Assignment Values of Every Soil Quality Indicator
11.3.4 Integrated Quality Index (IQI) Calculation
11.3.5 Spatial Analyses of Soil Quality Index (SQI)
11.4 Conclusions
References
12 Spatial Pattern Analysis and Identifying Soil Pollution Hotspots Using Local Moran's I and GIS at a Regional Scale in Northeast of Iran
12.1 Introduction
12.2 Study Area
12.3 Methods
12.3.1 Sampling and Analysis
12.3.2 Statistical Analysis
12.4 Results
12.4.1 Exploratory Analysis of Soil Variables
12.4.2 Pearson’s Correlation
12.4.3 Spatial Autocorrelation
12.4.4 Cluster Analysis
12.4.5 Spatial Distribution
12.5 Discussion
12.6 Conclusion
References
13 Soil Quality Assessment in Hilly and Mountainous Landscape
13.1 Introduction
13.1.1 Soil Quality
13.2 Soil Quality Indicators
13.2.1 Soil Quality Indicators Relevant to the Hilly and Mountainous Region
13.2.2 Soil Organic Carbon as an Indicator of Soil Quality
13.3 Methods of Assessing Soil Quality
13.3.1 Index Method
13.3.2 Multi-criteria Method
13.3.3 Modelling Approach
13.3.4 Geo-spatial Applications in Soil Quality Mapping
13.3.5 Novel Approach
13.4 Case Study: Soil Quality Assessment in a Watershed of Himalayan Region-India
13.4.1 Study Area
13.4.2 Methodology
13.4.3 Results and Discussion
13.4.4 Salient Findings
13.5 Summary and Conclusion
References
14 Soil Pollution Due to Sewage Sludge and Industrial Effluents
14.1 Introduction
14.2 Soil Pollution Due to Industry Effluents
14.3 Sources of Industry Causing Soil Pollution
14.3.1 Tannery Industry
14.3.2 Paper Mills Industry
14.3.3 Textile Industry
14.3.4 Distillery Effluents
14.4 Scenario of Sewage Sludge Generation in World and India
14.5 Source and Types of Sewage
14.5.1 Domestic Source
14.5.2 Commercial Source
14.5.3 Urban Source
14.6 Sewage Sludge as a Source of Soil Pollutant
14.6.1 Sewage Sludge as a Source of Chemical Contaminant
14.6.2 Persistent Organic Pollutant
14.7 Microplastics in Sewage Sludge
14.7.1 Effect of Microplastics on Soil Physical and Chemical Property
14.8 Conclusion
References
15 Spatial Distribution and Radiological Risk Quantification of Natural Radioisotopes in the St. Martin’s Island, Bangladesh
15.1 Introduction
15.2 Materials and Methods
15.2.1 Area of Interest
15.2.2 Sampling and Sample Processing
15.2.3 Analytical Procedure
15.2.4 Data Presenting Processes
15.3 Results and Discussion
15.3.1 Distribution of Radionuclides
15.3.2 Radiological Risk Assessment
15.3.3 Correlation Matrix Analysis
15.4 Conclusion
References
16 Risk Assessment of Heavy Metal Contaminations in Soil and Water Ecosystem
16.1 Introduction
16.2 Heavy Metal Sources
16.3 Natural Sources of Heavy Metals
16.4 Anthropogenic Sources of Heavy Metals
16.5 Heavy Metals in Soil
16.6 Heavy Metals in Water
16.7 Impact of Soil Pollution Through Heavy Metals on Human Being and Other Living Organisms
16.8 Impact of Water Pollution Through Heavy Metals on Human Being and Other Living Organisms
16.9 Human Health Risk Assessment
16.10 Environmental Legislation
16.11 Management of Heavy Metal Pollution in Soil and Water
16.12 Conclusion
References
17 Microplastics, Their Toxic Effects on Living Organisms in Soil Biota and Their Fate: An Appraisal
17.1 Introduction
17.2 Microplastic Occurrence, Source, and Properties
17.3 Methods for Detection and Quantification of Microplastics
17.4 Advance Methods
17.5 Effect on Physical and Chemical Properties of Soil
17.6 Effect on Soil Fauna
17.6.1 Nematode
17.6.2 Arthropod
17.6.3 Mites
17.6.4 Annelida
17.6.5 Isopods
17.6.6 Effect on Flora
17.6.7 Effect on Microbes
17.6.8 Impact on Nitrogen Cycle
17.6.9 Other Impact of Plastics on Vertebrates
17.7 Future Research Prospects
17.8 Conclusion
References
Part III Soil Health and Sustainable Management
18 Sustainable Land Use, Landscape Management and Governance
18.1 Introduction
18.2 Paradigm Shift in Managing Land-Based Resources
18.3 Alternatives and Approaches for Achieving Sustainability
18.4 Regenerative Land Management—A Restorative Approach
18.5 Conclusions
References
19 Characterization and Mapping of Soils for Sustainable Management Using Geospatial Techniques: A Case Study of Northeastern Bihar, India
19.1 Introduction
19.2 Study Area
19.3 Materials and Methods
19.3.1 Preparation of Base Maps
19.3.2 Ground-Truth Verification
19.3.3 Soil Sampling and Analysis
19.3.4 Soil Classification
19.3.5 Development of Soil Mapping Legend
19.3.6 Land Evaluation
19.4 Results and Discussion
19.4.1 Land Use/Land Cover
19.4.2 Landform and Landscape Ecological Units (LEUs)
19.4.3 Soil-Landform Relationship
19.4.4 Soil Mapping
19.4.5 Soil Survey Interpretation
19.4.6 Land Capability Classification
19.4.7 Land Irrigability Classification
19.4.8 Soil Suitability for Crops
19.4.9 Identification of Alternate Land Use Options Based on Problems and Potentials of Soils
19.5 Conclusions
References
20 Soil Pollution by Industrial Effluents, Solid Wastes and Reclamation Strategies by Microorganisms
20.1 Introduction
20.2 Nature, Composition & Characteristics of Industrial Effluent
20.3 Sources, Composition & Nature of Solid Wastes
20.4 Impact of Industrial Effluent & Solid Waste on Soil Health
20.5 Reclamation of Soil by Microbial Remediation of Industrial Effluent & Solid Waste Contaminants
20.5.1 Microbial Remediation of Heavy Metals
20.5.2 Remediation of Organic Pollutants
20.6 Conclusion & Future Aspects
References
21 Pollutants Bioremediation Using Biosurfactants: A Novel Approach for Improving Soil Health
21.1 Introduction
21.1.1 Physiochemical Properties
21.1.2 Classification
21.2 Synthesis of Precursor Molecule for Biosurfactants Production
21.2.1 Microbial Synthesis
21.2.2 Biosurfactant Producing Microbial Strains
21.3 Environmental Bioremediation and Soil Health
21.4 Bioremediation Mechanism
21.5 Conclusion and Future Directions
References
22 Agroforestry Systems for Carbon Sequestration and Food Security: Implications for Climate Change Mitigation
22.1 Introduction
22.2 Carbon Inputs and Outputs Are Used to Calculate Carbon Stocks
22.3 Approaches for Carbon Sequestration
22.3.1 Prospects for the Entire World
22.3.2 For Timber Production and Carbon Sequestration, Plantations Are Used
22.3.3 Forestland Rehabilitation
22.4 As a Prospective Abatement Approach, Agroforestry
22.5 Carbon Sequestration Through Agroforestry System
22.6 Food Availability and Reducing Carbon Emissions Have a Synergistic Impact
22.7 What Are the Potential Consequences for Rural Livelihoods?
22.8 Sustainable Livelihoods
22.9 Is It Possible for Rural People to Offer Carbon Credits Through Their Agricultural and Forestry Systems?
22.10 Can Carbon Offsets Help Residents in Rural Areas?
22.11 Livelihood Impacts of Carbon Projects
22.11.1 Significance of the Study
22.11.2 Short-Term Livelihood Impacts on Community Activities and Income
22.11.3 Long-Term Livelihood Impacts on Communities
22.11.4 Adaptation
22.11.5 Recommendations
22.12 Conclusions
References
23 Alley Cropping Agroforestry System for Improvement of Soil Health
23.1 Introduction
23.2 Alley Cropping: Soil Properties
23.2.1 Soil Physical Properties
23.2.2 Soil Chemical Properties
23.2.3 Soil Biological Properties
23.3 Alley Cropping and Soil Fertility/Nutrient Cycling
23.3.1 Nitrogen
23.3.2 Phosphorus
23.3.3 Potassium
23.4 Alley Cropping: Soil Carbon Stock and Sequestration
23.5 Conclusion
References
24 Performance of Rice-Lentil Cropping Under Different Tillage Influencing Soil Suppressiveness: A Short Term Approach
24.1 Introduction
24.2 Materials and Method
24.2.1 Filled Experiments and Soil Sampling
24.2.2 Soil Organic Carbon and Microbial Enzymatic Activity Analysis
24.2.3 Soil Microbial Community Assay for Culturable Microorganisms
24.2.4 Culture Independent Approach to Obtain the Abundance Label of Pseudomonas, Bacillus and Actinomyces in the Experimental Soil
24.2.5 In-Vitro Antagonistic Activity of the Native Isolates Against Fungal Pathogen Sclerotim Rolfsii
24.2.6 In-Vitro Soil Suppressive Activity on Sclerotium Rolfsii
24.2.7 Enzymatic Activity of Isolated Antagonist Microorganisms
24.2.8 Secondary Metabolites Production of Isolated Antagonist Microorganisms
24.2.9 DNA Extraction and Gel Electrophoresis of the Isolated Antagonist Microorganisms
24.2.10 Lentil Seed Germination Assay Supplemented with Isolated Microorganisms
24.3 Result and Discussion
24.3.1 Disease Infection and Infectious Loci Affected by Tillage
24.3.2 Soil Suppressivity Dynamics Following the Tillage Practices
24.3.3 Soil Microbiological Parameter Influence by Tillage
24.3.4 Soil Pseudomonas, Bacillus and Actinomyces Abundance Obtain from Culture Independent Quantification by QRT-PCR (on the Basis of Ct Value)
24.3.5 Dynamics of Soil Microbial Enzymatic Activity Affected by Different Tillage Management Practices
24.3.6 Pearson Correlation Among All the Soil Microbiological, Chemical and Biochemical Parameters with Disease Incidents Percentage
24.3.7 Principal Components Analysis of All the Variables (Soil Parameters, Disease Incidence Percentage and Soil Suppressive Index)
24.3.8 Biocontrol Potentiality and Biochemical Quantification Observed from the Different Native Biocontrol Bacteria Isolated from the Above Mention Experimental Field
24.3.9 Plant Growth Promotion (PGPR) Activity of Different Potential Native Biocontrol Bacteria Isolated from the Above Mention Experimental Field
24.4 Summary and Conclusion
24.5 Future Scope of Research of This Work is that,
References
25 Role of Soil Microbes in Soil Health and Stability Improvement
25.1 Introduction
25.2 Soil Structure
25.3 Soil Microbes Overview
25.3.1 Bacteria
25.3.2 Other Microbes
25.4 Enhancement of Soil Structure
25.5 Indicators of Soil Health
25.6 Soil Microbes and Their Types
25.6.1 Disease Causing Microbes
25.6.2 Biocontrol Agents Inhabiting in Soil (Resident Biocontrol Agents)
25.7 Soil Microbes Can Be Classified as Follows
25.7.1 On the Basis of Microbial Function
25.7.2 On the Basis of Microbial Activity
25.8 Characteristic Features of Soil-Inhabiting PGPR
25.8.1 Antibiotic Production in Soil
25.8.2 Hormone Production
25.8.3 Phosphate Solubilisation
25.8.4 Nitrogen Fixation
25.9 Role of Soil Microbes in Disease Control (Suppression).
25.10 Beneficial Effects of Rhizobacteria
25.11 Future Outlook
25.12 Conclusion
References
26 Rhizospheric Soil–Plant-Microbial Interactions for Abiotic Stress Mitigation and Enhancing Crop Performance
26.1 Introduction
26.2 The Rhizosphere
26.2.1 Rhizospheric Microbiome Dynamics
26.2.2 Soil Characteristics of Rhizosphere
26.2.3 Interactions between Plant and Microbes in the Rhizosphere
26.3 Plant Growth-Promoting Rhizobacteria
26.3.1 Nitrogen Fixing Bacteria
26.3.2 Nutrient Solubilising Bacteria
26.4 Role of PGPRs in Mitigating Stress
26.4.1 Salt Stress
26.4.2 Drought Stress
26.4.3 Heavy Metals (HM) Tolerance
26.5 Conclusions
References
27 Strategies for Heavy Metals Remediation from Contaminated Soils and Future Perspectives
27.1 Introduction
27.2 Methodologies
27.2.1 Physicochemical Approaches
27.2.2 Biological Approaches
27.3 Results and Discussion
27.3.1 Phyto-Remediation of Heavy Metals
27.3.2 Bioremediation Using Organic Residues and Microorganisms
27.3.3 Plant-Bacteria-Metal Interaction for Phytoremediation
27.3.4 Plant-Growth Promotion Mechanism
27.3.5 Alteration of Plant Metal Uptake Mechanism
27.4 Conclusions and Future Perspective
References
28 Phytoremediation of Arsenic Polluted Soil by Brassica Nigra L.
28.1 Introduction
28.2 Materials and Methods
28.2.1 Collection and Processing of the Soil Samples
28.2.2 In Vivo Culture and Treatment of Arsenic on Brassica Nigra L. (Mustard)
28.2.3 Field Emission Scanning Electron Microscopy (FESEM) and Energy-Dispersive X-Ray Spectroscopy (EDAX) Study
28.3 Results and Discussion
28.4 Conclusion
References
29 π-π Interaction: Defining the Role and Relevance in Environmental Detoxification of Heavy Metals from Soil
29.1 Introduction
29.2 Soil Environment
29.3 Major Soil Pollutants
29.4 Soil-Pollutants Interactions and Role of Complexation
29.5 Cation-π Interaction and Host–Guest Complexation
29.6 Sorption Behavior and π-π Interactions in Soil Remediation
References
30 Assessment of Ecological and Human Health Risk of Soil Heavy Metals Pollution: Study from Chotanagpur Plateau Region, India
30.1 Introduction
30.2 Materials and Methods
30.2.1 Study Area
30.2.2 Collection of Soil Samples and Its Procedures
30.2.3 Quantification of Soil Heavy Metals (HM) Pollution
30.3 Results
30.3.1 Distribution of Soil Heavy Metals (HM)
30.3.2 Importance Evaluation of Various Sources
30.3.3 Assessment of Human Health Risk (HHR) of Non-carcinogenic Type
30.4 Discussion
30.5 Possible Remediation Strategies to Control Ecological and Human Health Risk from Soil Heavy Metal Pollution
30.6 Conclusion
References
31 Bioremediation Approaches for Curbing the Potential of Toxic Element for Sustainable Agriculture
31.1 Introduction
31.2 Toxic Elements in Agricultural Soil
31.2.1 Inorganic Toxic Elements
31.2.2 Organic Toxic Element
31.2.3 Pesticides
31.2.4 Dye Pollutants
31.2.5 Antibiotics
31.3 Impact of Inorganic Pollutants on Soil and Plants
31.3.1 Soil
31.3.2 Plants
31.4 Bioremediation Strategies for Sustainable Agriculture
31.4.1 Plant Mediated Remediation of Heavy Metal Polluted Soil
31.4.2 Beneficial Interaction Between Micro-plant: Toxic Element Remediation
31.5 Conclusion
References
Index