Soft Crystals: Flexible Response Systems with High Structural Order

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This open access book introduces the science of the new materials, soft crystals, by showing various interesting examples. Different from conventional hard and stable crystals, the soft crystals respond to gentle stimuli such as vapor exposure and rubbing but maintain their structural order. In this book, their exhibition of remarkable visual changes in their shape, color, and luminescence is described. Through the chapters, historical background, recent remarkable developments, and future prospects are described concisely. This book helps readers to understand a new concept of materials that have the characteristics of stimulus-sensitive soft matter and finely controlled crystals and to design novel materials with the characteristics.

The English translation of this book from its Japanese language original manuscript was done with the help of artificial intelligence (machine translation by the service DeepL.com). The text has subsequently been revised further by a professional copy editor in order to refine the work stylistically.

Author(s): Masako Kato, Kazuyuki Ishii
Series: The Materials Research Society Series
Publisher: Springer
Year: 2023

Language: English
Pages: 264
City: Singapore

Preface
Contents
Part I Introduction
1 Background and Overview
1.1 Background and Significance
1.2 Structure of This Book
1.3 Soft Crystals: An Overview
1.3.1 Vapochromic Crystals
1.3.2 Mechanochromic Crystals
1.3.3 Organic Crystals Exhibiting Superelasticity or Ferroelasticity
1.4 Thermodynamic Images: Stimulus Versus Potential Energy
References
2 Classification and Definition of “Soft Crystals”
2.1 What Are “Soft Crystals”?
2.2 Crystal Polymorphisms
2.3 Comparison of “Soft Crystals” with Conventional “Hard Crystals” and “Soft Materials”
2.4 Comparison of “Soft Crystals” with “Liquid Crystals” and “Plastic Crystals”
2.5 Mechanical Softness of Molecular Crystals
2.6 Definition of “Soft Crystals”
References
3 Theoretical Background of Photophysical Properties
3.1 Background and Significance
3.2 Photophysical Properties of Diamagnetic Molecular Monomers
3.3 Electronic Absorption and Luminescence of π–π* Transitions
3.4 Electronic Absorption and Luminescence of (d–π*) (= MLCT) Transitions
3.5 Photophysical Properties of Molecular Dimers
3.6 Photophysical Properties of Molecular Crystals
References
Part II Various Soft Crystals Categorized by Stimulus-Response
4 Vapochromic Soft Crystals Constructed with Metal Complexes
4.1 Introduction
4.2 Soft Crystals and Vapochromism
4.3 Interactions Between Vapor Molecules (Gases) and Crystals
4.4 Vapochromic Metal Complexes
4.4.1 Vapochromism in Integrated Luminescent Platinum(II) Complexes
4.4.2 Vapochromism and Single-Crystal-To-Single-Crystal Structural Transitions
4.4.3 Cooperation Between Vapochromism and Spin-State Changes in a Nickel(II) Complex
4.4.4 Strongly Luminescent Copper(I) Complexes
4.5 Conclusion
References
5 Luminescent Mechanochromism and the Photosalient Effect of Aryl Gold(I) Isocyanide Complexes
5.1 Introduction
5.2 Luminescent Mechanochromism of Gold(I) Isocyanide Complexes
5.2.1 Luminescent Mechanochromism of Complex 4 and Its Subsequent Development
5.2.2 Mechanochromic Gold(I) Complexes with Tetrachromatic Luminescence
5.2.3 Screening of 48 Complex Species for Mechanochromic Properties
5.2.4 Infrared Luminescent Mechanochromic Gold(I) Complexes
5.2.5 Switching Chirality
5.3 Single-Crystal-To-Single-Crystal Phase Transition Induced by Mechanical Stimulation
5.3.1 Introduction
5.3.2 Single-Crystal-To-Single-Crystal Phase Transition with Formation of the Aurophilic Interaction
5.3.3 Single-Crystal-To-Single-Crystal Phase Transition with Disappearance of the Aurophilic Interaction
5.3.4 Reversible Single-Crystal-To-Single-Crystal Phase Transition
5.4 Optical Phase Transition and the Photosalient Effect
5.4.1 Introduction
5.4.2 Gold(I) Complexes Exhibiting Optical Phase Transitions and the Photosalient Effects
5.5 Conclusion
References
6 Elastic and Plastic Soft Crystals with Superelasticity, Ferroelasticity, and Superplasticity
6.1 Introduction
6.2 Organic Superelasticity and Shape-Memory Effects
6.2.1 Phase-Transition-Type Organic Superelasticity
6.2.2 Twin-Crystal-Type Organic Superelasticity
6.2.3 Organosuperelastic Crystals Exhibiting Luminescent Chromism
6.2.4 Superelasticity in Metal-Complex Crystals
6.2.5 Shape-Memory Effect
6.3 Organic Ferroelasticity
6.4 Coexistence of Organic Superelasticity and Ferroelasticity
6.4.1 Shape Remembrance and Antiferroelasticity of Organic Crystals Via Superelastic–Ferroelastic Conversion
6.4.2 Shear-Direction Selectivity of Superelasticity-Ferroelasticity and Multidirectional Superelastic Crystals
6.5 Organic Superplasticity
6.6 Conclusion
References
7 Triboluminescence of Lanthanide Complexes
7.1 Introduction
7.2 Aim of This Chapter
7.3 History of Triboluminescence Derived from Weak Stimuli
7.4 Luminescent Lanthanide Complexes
7.4.1 Evaluation of Photoluminescence by the Photo-Antenna Effect
7.4.2 Evaluation Methods of Triboluminescence
7.4.3 Discrete Complex Systems with Lanthanide Ions
7.4.4 Coordination Polymer Complexes
7.5 Conclusions
References
8 Thermosalient Phenomena in Molecular Crystals: A Case Study of Representative Molecules
8.1 Introduction
8.2 Analytical Methods for Thermosalient Phenomena
8.3 Thermosalient Phenomena in Crystals Classified Based on Crystal Characteristics and Mechanism of the Thermosalient Phenomena
8.3.1 Crystals of Flat Rigid Molecules Aggregated in Sheets (Class I Crystals)
8.3.2 Crystals of Molecules with Bulky Substituents Attached to a Cyclic Core Group (Class II Crystals)
8.3.3 Crystals of Molecules with Extended Intermolecular Hydrogen Bonds (Class III Crystals)
8.3.4 Thermosalient Phenomena Based on the Conformational Change of Flexible and Deformable Ring Structures
8.3.5 Miscellaneous Crystals Exhibiting Thermosalient Phenomena Due to a Phase Transition
8.3.6 Thermosalient Phenomena without Crystal Phase Transition
8.4 Summary
References
9 Soft Crystal Chemiluminescence Systems Using Organic Peroxides
9.1 Introduction: Research Significance of Soft Crystal Chemiluminescence Systems
9.2 Characteristics of the Chemiluminescence Reactions of Organic Peroxides
9.2.1 Real-Time Analysis by Photon Detection
9.2.2 Chemiexcitation, Quantum Yield and Emission-Wavelength Regulation
9.3 Chemiluminescence in the Solid State and Condensed State
9.4 Chemiluminescence in Molecular Crystals
9.4.1 Mechanistic Studies of Chemiluminescence Reactions in Crystals
9.4.2 Exploring the Science of Intracrystalline Reactions with Soft Crystal Chemiluminescence Systems
References
10 Molecular Crystal Calculation Prospects for Structural Phase Transitions
10.1 Introduction
10.1.1 Contribution of Crystal Structure Prediction to the Computational Chemistry of Molecular Crystals
10.1.2 Challenges of Molecular Crystal Calculations Using the Force Field Method
10.2 Crystal Force Field Calculation
10.2.1 Crystal Energy
10.2.2 Crystal Force Field
10.2.3 Crystal Structure Prediction
10.3 Studies on Soft Crystals Using Crystal Force Field Calculations
10.3.1 Force Field Parameters for Isocyanide Gold Complexes
10.3.2 Force Field Parameters for Helicate Lanthanide Complexes
10.3.3 Prediction of the Vapochromic Crystal Structures of Ni(II)-Quinonoid Complexes
10.3.4 Structural and Energetic Evaluation of the Thermosalience in Disilanyl Macrocycles
10.3.5 Intermediate Formation by Pyridine Coordination for Lanthanide Complexes
10.4 Perspectives on Computational Chemistry Methods for Molecular Crystals, Especially Soft Crystals
10.4.1 Domino-Transformation of Isocyanide Gold Complexes
10.4.2 Approach to Organic Superelasticity of Terephthalamide
10.5 Conclusion
References
11 Approach of Electronic Structure Calculations to Crystal
11.1 Introduction
11.2 Computational Methods Based on Electronic Structure Theory for Molecular Crystals
11.2.1 Cluster-Model/Periodic-Model Combined (CM/PM-Combined) Method
11.2.2 Quantum Mechanics/Periodic-Molecular Mechanics (QM/Periodic-MM) Method
11.2.3 Embedding Method Similar to QM/Periodic-MM Method
11.2.4 Quantum Embedding Theories
11.3 Application of Cluster Model/Periodic-Model (CM/PM) Combined Method to Metal-Organic-Frameworks (MOFs)
11.3.1 Gas Adsorption and Lateral Interaction
11.3.2 Gas Adsorption to Flexible MOF with Gate-Opening Mechanism
11.4 Application of QM/Periodic-MM Method to Molecular Crystal
11.4.1 Isomerization of Ruthenium(II) Sulfur Dioxide Complex in Crystal
11.4.2 Meta-Metal to Ligand Charge-Transfer (MMLCT) Excited State of Transition Metal Complexes in Crystal
11.5 Advantages and Disadvantages of CM/PM-Combined and QM/Periodic-MM Methods from the Viewpoint of Application
11.6 Conclusions and Perspectives
References
Part III Scope
12 Toward the Applications of Soft Crystals
12.1 Functions and Prospects of Soft Crystals
12.2 Toward the Functionalization of Soft Crystals
12.2.1 Organic Thin-Film Transistor Memory with a Highly Oriented Molecular Layer as a Dielectric Gate
12.2.2 Heat Shielding Materials Based on Phase Transition
12.2.3 Agents for the Collection of Volatile Organic Compounds (VOCs)
References