Smart Nanostructure Materials and Sensor Technology

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This book highlights the significance and usefulness of nanomaterials for the development of sensing devices and their real-life applications. The book also addresses various means of synthesizing 2D/3D nanomaterials, e.g., hydrothermal deposition process, electrospinning, Ostwald ripening, sputtering heterogeneous deposition, liquid-phase preparation, the vapor deposition approach, and aerosol flame synthesis. It presents an informative overview of the role of nanoscale materials in the development of advanced sensor devices at nanoscale and discusses the applications of nanomaterials in different forms prepared by diverse techniques in the field of optoelectronics and biomedical devices. Major features, such as type of nanomaterials, fabrication methods, applications, tasks, benefits and restrictions, and saleable features, are also covered.

Author(s): Rakesh Kumar Sonker, Kedar Singh, Rajendra Sonkawade
Publisher: Springer
Year: 2022

Language: English
Pages: 303
City: Singapore

Contents
1 Smart Nanomaterials and Sensing Devices: An Introduction
1.1 Introduction
1.1.1 Different Types of Nanoparticles
1.2 Briefing of Smart Nanomaterials
1.2.1 Semiconductor Nanoparticles (i.e. Colloidal Quantum Dots)
1.2.2 II - VI QDs
1.2.3 IV−VI QDs
1.2.4 III−V QDs
1.2.5 I−III−VI QDs
1.2.6 I−VI QDs
1.2.7 IV QDs
1.2.8 Metal Halides Perovskite (I–IV-VII3)-based Colloidal Quantum Dots
1.2.9 Carbon-Based Nanoparticles
1.3 Ceramic Nanoparticles
1.4 Metal Nanoparticles
1.5 Briefing of Sensing Devices (i.e. Sensors)
1.5.1 Different Types of Sensors
1.6 Modern Sensors
1.7 Conclusions
References
2 Fundamentals of Nanomaterials and Design Concepts for Sensing Devices
2.1 Introduction
2.2 Nanomaterial Synthesis
2.2.1 Physical Methods
2.2.2 Chemical Methods
2.2.3 Biological Methods
2.3 Classification of Magnetic Nanoparticles
2.3.1 Oxide
2.3.2 Metallic
2.3.3 Metallic with a Shell
2.4 Comparison of Different Synthesis Routes
2.5 Characterization of Magnetic NPs
2.5.1 Morphology
2.5.2 Composition Mapping
2.5.3 Structure and Bonding
2.5.4 Magnetism
2.6 Special Features of Magnetic Nanoparticles
2.6.1 Finite-Size Effects
2.6.2 Surface Effect
2.6.3 Quantum Size Effect
2.6.4 Macroscopic Quantum Tunneling Effect
2.7 MNP Sensors
2.7.1 Electrochemical
2.7.2 Optical
2.7.3 Piezoelectric
2.7.4 Magnetic Field
2.8 Magnetic Sensor Devices Based on Magneto Resistance (MR) Effect
2.8.1 Working Principle of MR Sensors
2.9 Conclusion
References
3 General Methods for Fabrication of Sensing Devices
3.1 Introduction
3.2 Mechanism of Gas Sensing
3.3 Distinct Factors Effecting the Sensing Performance of MoS2
3.4 General Methods for MoS2 Synthesis
3.5 Fabrication of MoS2-Based Sensing Devices for Gas Sensing Applications
3.6 Conclusion and Future Perspective
References
4 Functional Nanomaterials for Sensing Devices
4.1 Introduction
4.2 Functional Nanomaterials
4.2.1 Metal-Based Nanomaterials
4.2.2 Metal Oxide-Based Nanomaterials
4.2.3 Carbon-Based Nanomaterials
4.2.4 Conducting Polymer-Based Nanomaterials
4.3 Conclusion, Challenges, and Future Perspective
4.4 Additional Reading
References
5 Micro and Nanofibers-Based Sensing Devices
5.1 Introduction
5.2 Basics of Fiber Optics
5.3 Methodology
5.3.1 Electrospinning
5.3.2 Plasma-enhanched Chemical Vapor Depositions
5.4 Fiber Optics as Sensor
5.4.1 Mach–Zehnder Interferometer (MZI)-Based Fiber Optic Sensor
5.4.2 Fiber Grating Sensors
5.4.3 Fabry–Perot Interferometer (FPI)-Based Fiber Optic Sensor
5.4.4 Surface Plasmon Resonances Sensors
5.4.5 Whispering Gallery Mode Sensor
5.5 Application of Fiber Optics Sensors
5.5.1 For pH Sensing
5.5.2 Fiber Optic Gas Sensor
5.6 Conclusions and Outlooks
References
6 Environmental Impact of Sensing Devices
6.1 Introductions
6.2 Environmental Components and Sensing Devices
6.2.1 Electrochemical and Microelectrochemical System
6.2.2 Optical Devices
6.2.3 Semiconductor Sensing Devices
6.2.4 Biosensor
6.3 Application of Biosensor to Track Environment
6.3.1 Biosensor for Pesticide
6.3.2 Biosensor for Heavy Metal Detection
6.3.3 Other Environmental Pollutants
6.4 Biosensor for Detecting SARS-CoV-2
6.5 Conclusion
References
7 Advanced Carbon-Based Gas Sensors
7.1 Introduction
7.1.1 Carbon Quantum Dots (CQDs)
7.1.2 Graphene
7.1.3 Carbon Nanotubes (CNTs)
7.1.4 Fullerene
7.1.5 Carbon Black (CB)
7.1.6 Carbon Nanofiber
7.1.7 Nanodiamond
7.1.8 Conclusion
References
8 2D/3D Material for Gas Sensor
8.1 Introduction
8.2 Classifications of Gas Sensors
8.2.1 Electrochemical Sensors
8.2.2 Catalytic Sensors
8.2.3 Infrared Sensors
8.2.4 Photoionization Sensors
8.3 Design and Fabrication of Gas Sensor
8.4 Working Principle of Gas Sensor
8.5 Nanostructure Materials for Gas Sensors
8.5.1 Production of 3D Graphene Structures
8.5.2 Nanostructure Materials Sensing of Toxic Gases
8.5.3 Conclusions
References
9 Gas Sensors Based on Metal Oxide
9.1 Introduction
9.2 Emergence of Metal Oxide Gas Sensor
9.3 Theoretical Background and Their Mechanism Gas Sensor
9.4 Structure of Gas Sensors
9.5 Properties of Metal Oxide
9.5.1 Adsorption Ability
9.5.2 Catalytic Activity
9.5.3 Sensitivity
9.5.4 Thermodynamic Stability
9.6 Classifications of Gas Sensors
9.7 Classification of Metal Oxide
9.7.1 Transition Metal Oxide (TMO)
9.7.2 Non-transition Metal Oxide (NTMO)
9.8 Synthesis of Metals Oxide Nanoparticles
9.8.1 RF/DC Sputtering Method
9.8.2 Spray Pyrolysis Method
9.8.3 Sol-gel Method
9.8.4 Hydrothermal Method
9.8.5 Thermal Evaporation Method
9.9 Co-doped Metal Oxide Gas Sensors
9.10 Applications of Sensors
9.11 Conclusion
References
10 Gas Sensors Based on Chalcogenides
10.1 Introduction
10.2 Chalcogenides and Their Role in the Gas Sensor
10.3 Zinc Chalcogenides-based Gas Sensor
10.4 Tungsten Chalcogenides-based Gas Sensor
10.5 Molybdenum Chalcogenides-based Gas Sensor
10.6 Lead Chalcogenides-based Gas Sensor
10.7 Copper Chalcogenides-based Gas Sensor
10.8 Cadmium Chalcogenides-based Gas Sensor
10.9 Iron Chalcogenides-based Gas Sensor
10.10 Tin Chalcogenides-based Gas Sensor
10.11 Conclusion and Outlook
References
11 Metal-Organic Frameworks for Gas Sensors
11.1 Introduction
11.1.1 Classification of MOFs
11.2 Synthesis of MOFs and MOFs-Derived Composites
11.3 Methods and Sensing Mechanism of MOFs Sensor
11.3.1 Sensor Parameters
11.4 Metal-Organic Frameworks as Chemiresistive Sensor
11.4.1 Pristine MOF-Based Chemiresistive Gas Sensors
11.4.2 MOF-Metal Oxide Composites
11.4.3 MOF-Derived Chemiresistive Sensors
11.5 Challenges of Conventional Sensor and Opportunities
11.6 Conclusions
References
12 Perovskite-Based Gas Sensors
12.1 Introduction
12.2 Structure and Properties of Perovskite Material
12.3 Perovskites Merged Nanocomposites as Sensors
12.3.1 Advantages and Restrictions
12.4 Fabrication Techniques of Gas Sensors
12.4.1 Screen Printing
12.4.2 Chemical Vapor Deposition Technique
12.4.3 Sol-gel Technique
12.4.4 Physical Vapor Deposition Technique
12.4.5 Drop Coating Technique
12.4.6 Spray Pyrolysis Technique
12.5 Perovskite Gas Sensors
12.6 Gas Detection Mechanism of Perovskite-Based Gas Sensor
12.7 Sensing Response of Led Halide Perovskite-Based Gas Sensor
12.8 Conclusion and Endorsement for Future Research
References
13 Gas Sensors Based on Hybrid Nanomaterial
13.1 Introduction
13.1.1 Need of Gas Sensor Based on Hybrid Nanomaterial
13.1.2 Features and Limitations of Hybrid Materials for Sensor Application
13.2 An Overview of Detection of Toxic Gases Based on Hybrid Nanomaterials
13.2.1 Metal Oxide-Polymers Hybrid Composites
13.2.2 Metal Oxide–Carbon Hybrid Composite
13.2.3 Metal-Doped Hybrid Composites
13.2.4 Polymer-Carbon Hybrid Composite
13.3 Conclusion and Future Perspectives
References
14 Gas Sensor Based on Ferrite Materials
14.1 Introduction
14.2 Effect of Parameters on Ferrite Gas Sensor
14.2.1 Pore Size
14.2.2 Sensitivity
14.2.3 Characteristics Response
14.2.4 Hysteresis
14.2.5 Selectivity
14.2.6 Operating Temperature
14.2.7 Additives/Dopants
14.2.8 Radiation Effect
14.2.9 Phase Formation
14.2.10 Particle Size/Grain Size, Crystallite Size
14.3 Ferrite Materials
14.4 Types of Ferrite
14.4.1 Simple Ferrite
14.4.2 Mixed Ferrite
14.4.3 Substitutional Ferrite
14.5 Ferrite Crystal Structures
14.5.1 Spinel Structure
14.5.2 Garnet Structure
14.5.3 Hexagonal Structure
14.6 Effect of Morphology on Ferrite Gas Sensor
14.7 Gas Sensing Mechanism of Ferrite Nanomaterial
14.8 Ferrite Gas Sensor
14.9 Conclusion and Prospects for Future of Ferrite Materials
References