Self-Organizing Robots

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

It is man’s ongoing hope that a machine could somehow adapt to its environment by reorganizing itself. This is what the notion of self-organizing robots is based on. The theme of this book is to examine the feasibility of creating such robots within the limitations of current mechanical engineering. The topics comprise the following aspects of such a pursuit: the philosophy of design of self-organizing mechanical systems; self-organization in biological systems; the history of self-organizing mechanical systems; a case study of a self-assembling/self-repairing system as an autonomous distributed system; a self-organizing robot that can create its own shape and robotic motion; implementation and instrumentation of self-organizing robots; and the future of self-organizing robots. All topics are illustrated with many up-to-date examples, including those from the authors’ own work. The book does not require advanced knowledge of mathematics to be understood, and will be of great benefit to students in the robotics discipline, including in the areas of mechanics, control, electronics, and computer science. It is also an important source for researchers who wish to investigate the field of robotics or who have an interest in the application of self-organizing phenomena.

Author(s): Satoshi Murata, Haruhisa Kurokawa
Series: Springer Tracts in Advanced Robotics, Vol. 77
Publisher: Springer
Year: 2012

Language: English
Commentary: chaotic bookmarks; no cover
Pages: 262

001Download PDF (107.9 KB)front-matter......Page 1
Reductionist Design and Its Limits......Page 16
Components of Mechanical Systems......Page 17
Reductionist Design Theory of Mechanical Systems......Page 18
Modeling and Optimization......Page 20
Distributed Autonomous Systems and Self-Organization......Page 21
From Reductionism to Self-Organization......Page 22
Distributed Autonomous Systems and Theory of Design by Self-Organization......Page 23
Advantages of Self-Organizing Mechanical Systems......Page 26
Systems and Their Components......Page 29
The Complexity, the Number of Components, and the
Complexity of Connections......Page 30
References......Page 32
Hierarchy in Biological System......Page 34
Nucleic Acids: Formation of Double Helices by
Hybridization......Page 37
Protein Folding......Page 38
Central Dogma......Page 39
Biological Development: Assembly at the Level of Cells......Page 40
Biological Self-repair......Page 44
Physiological Regeneration......Page 45
True Regeneration......Page 46
Self-Organization of a Group of Individuals......Page 47
Social Insects......Page 48
Herds of Animals......Page 49
References......Page 50
Work by von Neumann......Page 51
Von Neumann’s Two Questions......Page 52
Von Neumann’s Self-reproducing Automata......Page 53
Universal Automata: The Kinetic Model......Page 55
Universal Automata: The Cellular Model......Page 56
Work by Penrose......Page 59
Mathematical Models of Self-reproduction......Page 62
Langton’s Self-reproducing Loop......Page 63
Graph Automata......Page 64
Magnet System by Hosokawa......Page 66
Mechatronic Self-assembling System by Klavins......Page 69
Self-reproducing System by Griffith......Page 70
References......Page 71
Distributed System and Components......Page 72
Diffusion Equations......Page 74
Pattern Formation by Reaction-Diffusion System......Page 76
Field of Diffusion......Page 82
Flow Field......Page 83
Game of Life......Page 84
Distributed Algorithms......Page 85
Spanning Tree Construction Problem......Page 86
Reliability......Page 87
References......Page 88
Methods for Self-assembly and Self-repair: Homogeneous
System Approach......Page 89
Hardware for Two Dimensional Units......Page 92
Method and Range of Communication......Page 95
Spatio-temporal Symmetry Breaking......Page 96
Description of the Target Configuration......Page 97
Strategy for Self-assembly......Page 100
Simulations and Experiments......Page 103
Algorithm (II) for Staged Self-assembly and Self-repair......Page 104
Onion Method......Page 106
Simulation of Self-assembly (Algorithm II)......Page 109
Simulation of Self-repair (Algorithm (II))......Page 110
Cellular Automata Model......Page 114
References......Page 115
Classes of Modular Robots......Page 116
Lattice-Type and Chain-Type......Page 117
Limited Space for Design......Page 118
Degrees of Freedom for Mobility......Page 119
Connectors (Connection Mechanisms)......Page 120
CEBOT......Page 121
Truss-Type: Fractal Machine......Page 123
Truss-Type: TETROBOT......Page 125
Lattice-Type: Metamorphic Robot......Page 126
Lattice-Type: CHOBIE......Page 127
Lattice-Type: Three Dimensional Universal Connection System......Page 128
Lattice-Type: Molecule......Page 131
Lattice-Type: ATRON......Page 132
Lattice-Type: Molecube......Page 134
Chain-Type: PolyPod and PolyBot......Page 135
Chain-Type: CONRO and Superbot......Page 136
Lattice-Type: Catom......Page 137
Amorphous-Type: SlimeBot......Page 138
Hybrid Type Combining Lattice and Chain......Page 139
References......Page 140
M-TRAN Module......Page 142
Basic Motions......Page 145
Polarity......Page 148
Universal Assembly and Self-reconfiguration......Page 149
Planning Metamorphosis Procedure......Page 150
Search for Metamorphosis Procedures......Page 151
Metamorphosis between Mobile Robot Configurations......Page 152
Distributed System and Grouping......Page 155
Meta-modules Simulating Virtual Modules......Page 157
Regular Structures......Page 159
Motions of Planar Regular Structures......Page 166
Distributed Metamorphosis by the Cellular Automaton Model......Page 171
Docking and Merging......Page 177
Self-replication
......Page 179
M-TRAN Colony......Page 180
References......Page 181
Manipulator End Point Control......Page 183
Legged Walking Robots
......Page 185
Whole Body Locomotion......Page 189
Design of Motion Control Systems......Page 193
Synchronization by Diffusion......Page 194
Entrainment......Page 197
How to Introduce Phase Offsets......Page 201
Connection with Physical Systems......Page 203
Global Entrainment......Page 204
Neural Oscillator......Page 205
Genetic Algorithm......Page 207
CPG Control System......Page 209
Fitness and Dynamics Simulation......Page 210
GA Optimization......Page 211
Real Time CPG Control......Page 213
Issues of CPG Control......Page 217
References......Page 218
Structure and Mechanism......Page 220
Connection Mechanism......Page 223
Circuitry......Page 228
M-TRAN Simulator......Page 232
Program for Centralized Metamorphoses......Page 234
Errors and Reliability......Page 239
Structural Deformation......Page 240
Dealing with Errors......Page 241
References......Page 242
Module Size......Page 243
Choice between Self-reconfiguration and Self-assembly......Page 244
From Mechatronics to Molecular Machines......Page 245
Molecular Machines Based on DNA Nanotechnology......Page 246
Self-assembly in DNA Nanostructures......Page 247
DNA Sensors and DNA Actuators......Page 249
From Nanotechnology to Molecular Robotics......Page 250
Emergence of Hierarchy: The Ultimate Problem......Page 253
References......Page 254
012Download PDF (118.8 KB)back-matter......Page 255