Risk, Reliability, Uncertainty, and Robustness of Water Resource Systems

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

In Risk, Reliability, Uncertainty and Robustness of Water Resources Systems, thirty-five leading scientists provide state-of-the-art reviews of topical areas of research on water resources systems, including aspects of extreme hydrological events: floods and droughts, water quantity and quality, dams, reservoirs and hydraulic structures, evaluating sustainability and climate change impacts. As well as discussing essential challenges and research directions, the book will assist in applying theoretical methods to the solution of practical problems in water resources.

Author(s): Janos J. Bogardi, Zbigniew W. Kundzewicz
Series: International Hydrology Series
Edition: illustrated edition
Publisher: Cambridge University Press

Language: English
Pages: 238

Half-title......Page 3
Series-title......Page 5
Title......Page 7
Copyright......Page 8
Dedication......Page 9
Contents......Page 11
Contributors......Page 15
1 Introduction......Page 19
2.1 INTRODUCTION......Page 22
2.2.1 Defining a region......Page 23
2.2.4 A need for prioritization of risks at the regional level......Page 24
2.3 ON SOME ORGANIZATIONAL ASPECTS......Page 25
2.5 THE USE OF DSS FOR INTEGRATED RISK ASSESSMENT STUDIES......Page 26
2.5.1 Decision process and the role of models and tools in IRRASM......Page 27
Comment......Page 28
2.5.2 Decision-aiding techniques in use for safety management......Page 29
2.5.4 Decision Support Systems and the IRRASM process......Page 30
2.6 THE USE OF GIS TECHNOLOGY FOR IRRASM......Page 31
2.7 THE KOVERS APPROACH......Page 33
2.7.1 KOVERS monographs of dangerous substances......Page 35
2.7.2 KOVERS chemical database......Page 36
REFERENCES......Page 39
3.1 INTRODUCTION......Page 40
3.2 FOR PRACTICAL PURPOSES.........Page 41
3.3 CLIMATE-CHANGE-IMPACT SCENARIOS: FROM BLUFFING TO METABLUFFING......Page 42
3.4 IN PRAISE OF THEORY AND ROBUST RESULTS......Page 43
3.5 A REALITY CHECK......Page 44
3.6 CONCLUSIONS, OR A TALE ABOUT UNKUNKS, KUNKS, AND SKUNKS......Page 46
REFERENCES......Page 47
4.2.2 Rainfall measurement uncertainty......Page 48
Effect of network density......Page 49
Effect of rainfall intensity......Page 50
4.2.4 Flood forecast uncertainty......Page 51
4.3.1 Introduction......Page 54
4.3.2 The RFFS Information Control Algorithm......Page 55
4.4 RISK AND ENSEMBLE FORECASTING......Page 56
REFERENCES......Page 58
5.1.2 Potential benefits of probabilistic forecasts......Page 59
5.2.1 Probabilistic quantitative precipitation forecast......Page 60
5.3.2 Local climatic guidance......Page 61
5.4.3 River climatic guidance......Page 62
REFERENCES......Page 63
6.2.1 First step of a risk model......Page 65
6.3 “INONDABILITÉ” METHOD......Page 66
6.3.1 Vulnerability mapping......Page 67
6.3.2 Hazard mapping......Page 68
6.3.3 Synthetic “inondabilité” maps......Page 69
6.4.2 What should be the quantitative base of the negotiation?......Page 70
REFERENCES......Page 71
7.1 VARIABILITY IN AUSTRALIA’S CLIMATE AND HYDROLOGY......Page 72
7.3 URBAN SYSTEMS......Page 73
Stochastic analysis......Page 74
Economics and social equity of restrictions policies......Page 75
7.4.1 Overview......Page 76
7.4.3 Allocation under conditions of uncertainty......Page 77
7.5 INFRASTRUCTURE ROBUSTNESS......Page 78
REFERENCES......Page 79
8.3 MEASURING THE “INVISIBLES” OF SOCIETY......Page 80
8.4 A CONTEXTUAL ANALYSIS OF THE DROUGHT-RELATED SOCIAL MESSAGES OF NEWSPAPER ARTICLES......Page 82
8.5 ANALYSIS OF THE OBSERVED WATER SAVING PHENOMENON: ANOTHER EXAMINATION OF THE WORKING HYPOTHESIS......Page 83
8.6 MODELING THE SPRD-WSP TRANSFORMATION MECHANISM: AN ANALOGY OF THE WATER SAVING ACTION USING THE “TANK” MODEL......Page 84
REFERENCES......Page 87
9.1 INTRODUCTION......Page 88
9.3 DETERMINATION OF A CAPTURE ZONE BY MONTE CARLO SIMULATION......Page 89
9.4 RESULTS......Page 90
REFERENCES......Page 93
10.2.1 Selected variables......Page 94
10.2.2 The mathematical model......Page 95
10.2.4 Estimation of model parameters; the Metropolis-Hastings (MH) algorithm......Page 96
10.4 RESULTS......Page 97
10.5.2 Limits and perspectives......Page 99
10.6 CONCLUSIONS......Page 101
REFERENCES......Page 102
11.1 INTRODUCTION......Page 104
11.2 STUDY SITE CHARACTERISTICS......Page 105
11.3 MODEL DEVELOPMENT......Page 106
Temporal precipitation patterns......Page 107
Interception......Page 108
Infiltration......Page 109
Temporal analysis of precipitation events......Page 110
Spatial analysis of precipitation events......Page 111
11.4.2 Results of water yield modeling......Page 113
11.5 EVALUATING RISK AND RELIABILITY IN WATER YIELD......Page 114
11.6 SUMMARY AND CONCLUSIONS......Page 115
REFERENCES......Page 116
APPENDIX: NOTATION OF SYMBOLS......Page 117
12.1 INTRODUCTION......Page 119
12.3 DEVELOPMENT OF REGIONAL HYDROCLIMATOLOGICAL STREAMFLOW MODEL......Page 120
Climate database......Page 121
12.3.2 Regional hydroclimatological regression models of annual streamflow......Page 123
Model validation......Page 124
12.5.1 Validation of our overall methodology......Page 125
12.5.2 The general sensitivity of water supply yield to changes in climate......Page 126
12.6 CONCLUSIONS......Page 127
REFERENCES......Page 128
13.1 INTRODUCTION......Page 129
13.2 INVESTIGATION OF HISTORICAL SERIES......Page 130
13.3 NONSTATIONARY SCENARIOS......Page 131
13.3.2 Modified time-series models......Page 132
Stochastic downscaling......Page 133
13.4.2 Changes in runoff......Page 134
13.5 AN EXAMPLE OF ECOLOGICAL RISK ANALYSIS......Page 136
13.6 CONCLUSIONS......Page 138
REFERENCES......Page 139
14.1.1 Displaced ideals......Page 140
14.2.1 Fuzzy distance metrics......Page 141
14.2.2 Selecting acceptable alternatives......Page 143
14.2.4 Fuzzy acceptability measure......Page 144
14.3.1 Tisza River example......Page 145
14.3.2 Yugoslavia (system S2) example......Page 146
14.4 CONCLUSIONS......Page 148
REFERENCES......Page 149
15.2 SOURCES OF UNCERTAINTIES......Page 151
15.4 METHODS FOR UNCERTAINTY ANALYSIS......Page 152
15.4.2 Rosenblueth’s and similar Point Estimate (PE) methods......Page 153
15.4.3 Integral transformation techniques......Page 154
15.4.4 Monte Carlo simulation......Page 155
15.5 REMARKS ON UNCERTAINTY ANALYSIS TECHNIQUES......Page 156
15.7 CONCLUDING REMARKS......Page 157
REFERENCES......Page 159
16.1 INTRODUCTION......Page 161
16.3 A PROBABILISTIC WATER QUALITY MANAGEMENT MODEL......Page 162
16.3.4 Vulnerability......Page 163
16.4 THE STOCHASTIC BRANCH AND BOUND METHOD......Page 164
16.4.3 Vulnerability bounds......Page 165
16.5 APPLICATION OF THE STOCHASTIC BRANCH AND BOUND METHOD FOR MANAGING BOD DISCHARGES IN THE WILLAMETTE RIVER......Page 166
Acknowledgments......Page 168
APPENDIX: NOTATION......Page 169
17.2 RISK AND UNCERTAINTY......Page 171
17.3 HYDROMETEOROLOGICAL INPUT AND CLIMATE CHANGE......Page 172
17.5 ANALYSIS OF RESULTS......Page 173
17.6 UNCERTAINTY OF RISK ANALYSIS......Page 175
REFERENCES......Page 178
18.1 INTRODUCTION......Page 180
18.1.1 Potential failure modes of the system......Page 181
18.1.2 Likelihood of failures......Page 182
18.1.6 Synthesize all of the above into a framework for management of the water resources system, and select the optimal…......Page 183
REFERENCES......Page 185
19.2 SUSTAINABILITY: SOME ISSUES AND CHALLENGES......Page 187
19.3 DEFINING SUSTAINABILITY OF WATER RESOURCES SYSTEMS......Page 189
19.4.1 Efficiency, survivability, and sustainability......Page 190
19.4.2 Weighted criteria indices......Page 191
19.4.3 Weighted statistical indices......Page 192
19.5 FINAL REMARKS......Page 197
REFERENCES......Page 198
20.1 INTRODUCTION......Page 199
20.2 ECONOMY-BASED IRREVERSIBILITY CONSIDERATIONS......Page 200
20.3 PHYSICALLY-BASED REVERSIBILITY CONSIDERATIONS......Page 202
20.4.1 Complete cleaning of a polluted groundwater system......Page 204
20.4.2 Partial cleaning of a polluted groundwater system......Page 205
REFERENCES......Page 206
21.1 INTRODUCTION......Page 208
21.2.2 Developed countries......Page 210
21.2.3 Hydroelectric power......Page 211
21.3 RESERVOIR SEDIMENTATION......Page 212
21.4 OUTLOOK OF RESERVOIRS IN THE FUTURE......Page 213
21.5.1 Integrated urban water management......Page 214
REFERENCES......Page 215
22.1 INTRODUCTION......Page 217
22.2 CASE STUDY SYSTEM......Page 218
22.3 GENETIC ALGORITHM MODEL......Page 219
22.4 PERFORMANCE EVALUATION......Page 221
22.5 ANALYSES AND RESULTS......Page 222
22.6 DISCUSSION......Page 224
REFERENCES......Page 225
23.1 INTRODUCTION......Page 227
23.2 THE RISK MANAGEMENT PROCESS......Page 229
23.4.1 Examples of risk calculations......Page 230
23.4.2 An example of a risk calculation for risk of life......Page 231
23.4.3 Examples of risk calculation on the basis of exceedance probabilities......Page 232
23.4.4 Risk evaluation......Page 235
23.4.6 Uncertainty of risk estimates......Page 236
REFERENCES......Page 237