Resource Recovery and Recycling from Waste Metal Dust

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This book examines resource recovery and recycling from waste metal dust, including currently used techniques for waste processing and recycling and their applications, with practical examples and economic potentials of the processes. The focus of this book is on resource recovery by suitable treatments and techniques, including those of recovery by-products. For the first time, this book provides a comprehensive, one-stop reference including seminal principles and methods, the advantages and disadvantages of the processes discussed, and the economics of the technology. It will serve as a technical reference for working scientists and engineers, while serving as an educational reference to students studying the waste recovery of metals.

Author(s): Daniel Ogochukwu Okanigbe, Abimbola Patricia Popoola
Publisher: Springer
Year: 2023

Language: English
Pages: 326
City: Cham

Preface
Contents
Part I: Resource Recovery and Recycling from Waste Metal Dust
Chapter 1: Resource Recovery and Recycling from Waste Metal Dust (I): Waste Iron Dust and Waste Aluminum Dust
1.1 Waste Metal Dusts
1.2 Types of Waste Metal Dusts
1.2.1 Waste Iron Dust
1.2.1.1 Generation
1.2.1.2 Description of WID
Particle Size Distribution of WID
Chemical Composition of Typical WID
Mineralogy of WID
Morphology of WID
1.2.1.3 Stabilization/Solidification for Recirculation or Disposal of WID
1.2.1.4 Resource Recovery and Recycling from WID
The Recovery of Metals from WID
Conversion of WSD into Value-Added Product
1.2.2 Waste Aluminum Dust
1.2.2.1 Generation
1.2.2.2 Description of WAD
Particle Size Distribution of WAD
Chemical Composition of Typical WAD
Mineralogy of WAD
Morphology of WAD
1.2.2.3 Recirculation of WAD
1.2.2.4 Resource Recovery and Recycling from WAD
1.3 Conclusions
References
Chapter 2: Resource Recovery and Recycling from Waste Metal Dust (II): Waste Copper Dust
2.1 Introduction
2.2 Waste Copper Dust
2.2.1 Generation
2.2.2 Description of WCD
2.2.2.1 Particle Size Distribution of WCD
2.2.2.2 Chemical Composition of Typical WSD
2.2.2.3 Mineralogy of WCD
2.2.2.4 Morphology of WCD
2.2.3 Recirculation of WCD
2.2.4 Resource Recovery and Recycling from WCD
2.2.4.1 The Recovery of Metals from WCD
The Use of Hydrometallurgical Techniques
The Use of Bio-Hydrometallurgy Techniques
The Use of Pyrometallurgical–Hydrometallurgical Techniques
The Use of Physical Separation Techniques
Stabilization/Solidification
Conversion of WCD into Value-Added Product
2.3 Conclusions
References
Part II: Pre-treatment of Waste Copper Dust
Chapter 3: Pre-treatment of Waste Copper Dust (I): Potential of Oxidative Roasting–Density Separation–Sulphuric Acid Leaching Technology for Copper Recovery
3.1 Introduction
3.2 Experimental Method
3.2.1 Material
3.2.2 Methods
3.2.2.1 Pre-Treatment Methods
Oxidative Roasting
Density Separation Method
3.3 Results and Discussion
3.3.1 Effect of Pre-Treatments on Mineralogy of WCD
3.3.1.1 Oxidative Roasting
3.3.1.2 Density Separation
3.3.1.3 Effect of Pre-Treatment on Classification of WCD
3.3.1.4 Effect of Pre-Treatment on Micro-Porosities
3.3.1.5 Effect of Pre-Treatment on Surface Area, Pore Volume, and Pore Diameter of CSD
3.4 Conclusions
References
Chapter 4: Pre-treatment of Waste Copper Dust (II): Optimum Predictive Models and Experimental Data Error Margin
4.1 Introduction
4.2 Experimental Method
4.2.1 Materials
4.2.1.1 Waste Metal Dust (WMD)
4.2.1.2 Methods
Design of Experiment (DOE)
Modelling
4.3 Results and Discussion
4.3.1 Model Development for Outputs from OR and DS
4.3.1.1 Different Experimental Conditions and Constraints for OR
Categorizing Constraint Models for OR
4.3.1.2 Different Experimental Conditions and Constraints for DS
Categorizing Constraint Models for DS
4.3.1.3 Data Error Margin for OR
4.4 Conclusions
References
Part III: Extraction of Copper Oxide
Chapter 5: Extraction of Copper Oxide (I): Purified CuSO4 Solution
5.1 Introduction
5.2 Materials and Methods
5.2.1 Material
5.2.2 Methods
5.2.2.1 Sampling Using Rotary Splitter
5.2.2.2 Sampling Using the Coning and Quartering Method
5.2.2.3 Particle Size Distribution (PSD) of As-Received WCD
5.2.2.4 Calculations for Preparing Sulfuric Acid Solution
5.2.2.5 Leaching Parameters
5.2.2.6 Experimental Procedures for Sulfuric Acid Leaching
Experimental Procedure for Leaching of WCD Using Hotplate with Stirrer
Experimental Procedures for Leaching of WCD Using a Laboratory Oven
5.2.2.7 Sample Filtration
5.2.2.8 Proposed Process Flow Diagram
5.3 Results and Discussion
5.3.1 Visual Observation of As-Received WCD
5.3.2 Digital Hotplate Leaching Process of WCD
5.3.3 Visual Analysis of Residue After Leaching Process
5.3.4 Visual Analysis Digital Hotplate Leachate
5.3.5 Visual Analysis on Oven Leachate
5.3.6 Results on Mass Balance: Digital Hotplate
5.3.6.1 Test 1 Hotplate Leaching Results for 2 M H2SO4
5.3.6.2 Test 2 Hotplate Leaching Results for 2 M H2SO4
5.3.6.3 Test 1 Hotplate Leaching Results for 4 M H2SO4
5.3.6.4 Test 2 Hotplate Leaching Results for 4 M H2SO4
5.3.6.5 Test 1 Hotplate Leaching Results for 6 M H2SO4
5.3.6.6 Test 2 Hotplate Leaching Results for 6 M H2SO4
5.3.7 Results on Mass Balance: Oven
5.3.7.1 Test 1 Oven Leaching Results for 2 M H2SO4
5.3.7.2 Test 2 Oven Leaching Results for 2 M H2SO4
5.3.7.3 Test 1 Oven Leaching Results for 4 M H2SO4
5.3.7.4 Test 2 Oven Leaching Results for 4 M H2SO4
5.3.7.5 Test 1 Oven Leaching Results for 6 M H2SO4
5.3.7.6 Test 2 Oven Leaching Results for 6 M H2SO4
5.3.7.7 Test 1 Oven Leaching Results for 8 M H2SO4
5.3.7.8 Test 2 Oven Leaching Results for 8 M H2SO4
5.3.7.9 Test 1 Oven Leaching Results for 10 M H2SO4
5.3.7.10 Test 2 Oven Leaching Results for 10 M H2SO4
5.3.8 Graphical Leaching Results for Digital Hotplate
5.3.8.1 Digital Hotplate Leaching for 2 M H2SO4 Test Work
5.3.8.2 Digital Hotplate Leaching for 4 M H2SO4 Test Work
5.3.8.3 Digital Hotplate Leaching for 6 M H2SO4 Test Work
5.3.8.4 Oven Leaching for 2 M H2SO4 Test Work
5.3.8.5 Results for Oven Leaching of 4 M H2SO4
5.3.8.6 Results for Oven Leaching of 6 M H2SO4
5.3.8.7 Results for Oven Leaching of 8 M H2SO4
5.3.8.8 Results for Oven Leaching of 10 M H2SO4
5.3.9 Production of Purified Pregnant Leach Solution from Leachate
5.4 Conclusion
References
Chapter 6: Extraction of Copper Oxide (II): Copper Oxide Nanoparticles
6.1 Introduction
6.2 Experimental Method
6.2.1 Material
6.2.1.1 Waste Metal Dust
6.2.2 Methods
6.2.2.1 Production of Pregnant Leach Solution (PPLS)
6.2.2.2 Design of Experiment and Procedure for Production of Copper Precursor
6.2.2.3 Design of Experiment and Procedure for Production of CuO-NPs from Copper Precursor
6.3 Results and Discussion
6.3.1 Mineralogy of Copper Precursor
6.3.1.1 Mineralogy of Copper Precursor Produced Under TC 25 °C/340 rpm
6.3.1.2 Mineralogy of Copper Precursor Produced Under TC 25 °C/740 rpm
6.3.1.3 Mineralogy of Copper Precursor Produced Under TC 25 °C/1480 rpm
6.3.1.4 Mineralogy of Copper Precursor Produced Under TC 55 °C/340 rpm
6.3.1.5 Mineralogy of Copper Precursor Produced Under TC 55 °C/740 rpm
6.3.1.6 Mineralogy of Copper Precursor Produced Under TC 55 °C/1480 rpm
6.3.1.7 Mineralogy of Copper Precursor Produced Under TC 85 °C/340 rpm
6.3.1.8 Mineralogy of Copper Precursor Produced Under TC 85 °C/740 rpm
6.3.1.9 Mineralogy of Copper Precursor Produced Under TC 85 °C/1480 rpm
6.3.1.10 Optimum TC for Production of Copper Precursor
6.3.2 Mineralogy of Copper Oxide Nanoparticles
6.3.2.1 Mineralogy of CuO-NPs Produced under 650 °C/1 h
6.3.2.2 Mineralogy of CuO-NPs Produced under 650 °C/2 h
6.3.2.3 Mineralogy of CuO-NPs Produced under 650 °C/3 h
6.3.2.4 Mineralogy of CuO-NPs Produced Under 750 °C/1 h
6.3.2.5 Mineralogy of CuO-NPs Produced Under 750 °C/2 h
6.3.2.6 Mineralogy of CuO-NPs Produced Under 750 °C/3 h
6.3.2.7 Mineralogy of CuO-NPs Produced Under 850 °C/1 h
6.3.2.8 Mineralogy of CuO-NPs Produced Under 850 °C/2 h
6.3.2.9 Mineralogy of CuO-NPs Produced Under 850 °C/3 h
6.3.2.10 Optimum TC for Production of CuO-NPs
6.3.3 Characterization of CuO-NPs
6.3.3.1 SEM
6.3.3.2 TEM
6.4 Conclusions
References
Part IV: Thermal and Mechanical Properties
Chapter 7: Thermal and Mechanical Properties (I): Optimum Predictive Thermal Conduction Model Development for Epoxy-Filled Copper Oxide Nanoparticles Composite Coatings on Spent Nuclear Fuel Steel Casks
7.1 Introduction
7.2 Problem Statement
7.3 Research Objectives
7.3.1 Main Objective
7.3.2 Sub-Objectives
7.4 Research Hypotheses
7.5 Significance of Study
7.6 Literature Review
7.6.1 Background and Literature Survey
7.6.1.1 Background
Transportation of SNF
Types of Casks for Transportation of SNF
Steel
Surface Coatings
Epoxy Coatings
7.6.2 Literature Survey
7.6.2.1 Introduction
Intrinsically Thermally Conductive Epoxy (ITCE) Coatings
Filled-Type Thermally Conductive Epoxy (FTCE) Composites Coatings
7.6.2.2 Review of Publications on Anticorrosion Properties and Interfacial Thermal Resistance of Epoxy Composite Coatings
Anticorrosion Property of Epoxy Composites Coatings
Interfacial Thermal Resistance of Epoxy Composite Coatings
7.6.2.3 Review of Publications on Neutron Shielding, Anticorrosion Properties and interfacial Thermal Resistance of CuO-NPs-Epoxy Composite Coatings
Neutron Shielding Capacity of Epoxy-CuO-NPs Coatings
Thermal Conductivity of Epoxy-CuO-NPs Coatings
Anticorrosion and Mechanical Properties of Epoxy-CuO-NPs Coatings
7.6.2.4 Thermal Conduction Models and Inner Mechanisms of Thermally Conductive Epoxy Composite
7.7 Methodology
7.7.1 Materials and Methods
7.7.1.1 Materials
WCD
Epoxy-Resin
Steel
7.7.1.2 Methods
Density Separation of WCD
Design of Experiment and Procedure for Production of Copper Precursor from Concentrates
Design of Experiment and Procedure for Production of CuO-NPs from Copper Precursor
Preparation and Polymerization of Hybrid Nanocomposite Coatings by Electron Beam Radiation
Development of Predictive Models
Experimental Validation and Simulation
Characterization of the Developed Epoxy-CuO-NPs Composite Coatings
Measurement of the Basic Properties of the Developed Epoxy-CuO-NPs Composite Coatings
Corrosion Tests
Weight Loss Measurements
Thermal Conductivity Measurements
7.8 Contribution to Knowledge
7.9 Ethical Considerations
7.10 Dissemination
7.11 Budget and Time Frame
7.11.1 Budget
7.11.2 Time Frame
References
Chapter 8: Thermal and Mechanical Properties (II): Spark Plasma Sintered Ti–6Al–4V Alloy Reinforced with Mullite-Rich Tailings for Production of Energy Efficient Brake Rotor
8.1 Introduction
8.2 Problem Statement
8.3 Research Objectives
8.3.1 Main Objective
8.3.2 Sub-Objectives
8.4 Research Hypotheses
8.5 Significance of Study
8.6 Literature Review
8.6.1 Introduction
8.6.2 Theoretical Background
8.6.2.1 Titanium and Ti–6Al–4V Alloy
8.6.2.2 Mullite
8.6.2.3 Design of Brake Rotors
8.6.3 Review: Use of TI–6Al–4V Alloy to Design Brake Rotors
8.6.3.1 Problem Definition and Solution Formulation of Ti–6Al–4V Alloy for Design of Vehicle Brake Rotors
Problem Definition
Solution Formulation
8.6.3.2 Additive Manufacturing of Ti–6Al–4V Alloy and Effect on Its Wear and Thermal Conductivity Properties as Material for Design of Brake Rotors
Microstructural Modification of Ti–6Al–4V Alloy
Coating of Ti–6Al–4V Alloy
Reinforcement
Secondary Resource of Mullite as Reinforcement to Ti–6Al–4V Alloy
Manufacturing Method
8.7 Methodology
8.7.1 Materials
8.7.1.1 Matrix Material
8.7.1.2 Reinforcement Materials
8.7.1.3 Equipment and Tools
8.7.1.4 Methods
Powder Weighing
Powder Mixing
Density Measurement
Process Optimization
Spark Plasma Sintering
Development of Predictive Models
Experimental Validation and Simulation
Characterization and Tribological Measurement
8.8 Contribution to Knowledge
8.9 Ethical Considerations
8.10 Dissemination
8.11 Budget and Time Frame
8.11.1 Budget
8.11.2 Time Frame (Table 8.9)
References
Part V: Other Engineering Applications
Chapter 9: Wave Energy Converter Design: Seawater Integrity and Durability of Epoxy Resin-Filled Corrosive Microorganism Surface-Modified Waste Copper Dust
9.1 Introduction
9.2 Problem Statement
9.3 Research Objectives
9.3.1 Main Objective
9.3.2 Sub-Objectives
9.3.2.1 To Determine the Following Mechanical Properties of Unmodified Epoxy Resin
9.3.2.2 To Optimize the Following Mechanical Properties of Epoxy Resin-Filled Synthetic Copper Powder Without Surface Modification
9.3.2.3 To Optimize the Following Mechanical Properties of Epoxy Resin-Filled Synthetic Copper Powder with Surface Modification
9.3.2.4 To Optimize the Following Mechanical Properties of Epoxy Resin-Filled Synthetic Aluminum Powder Without Surface Modification
9.3.2.5 To Optimize the Following Mechanical Properties of Epoxy Rresin-Filled Synthetic Aluminum Powder with Surface Modification
9.3.2.6 To Optimize the Following Mechanical Properties of Epoxy Resin-Filled WCD Without Surface Modification
9.3.2.7 To Optimize the Following Mechanical Properties of Epoxy Resin-Filled WCD with Surface Modification
9.3.2.8 To Determine the Effect of Seawater Aging on Tensile Strength and Fatigue Strength of the Following Composites Chosen at Optimum Test Conditions
9.3.2.9 Development of Optimum Predictive Models for the Different Epoxy Resin Composites and the Experimental Validation of Optimum Predictive Models
9.4 Research Hypotheses
9.5 Significance of Study
9.6 Background and Literature Survey
9.6.1 Background
9.6.1.1 Physicochemistry
9.6.1.2 Adhesion
Mechanical Adhesion
Proper Adhesion
9.6.1.3 Adhesive
Phenolic
Acrylic
Cyanoacrylate
Urethane
Epoxy Resins
9.6.2 Literature Survey
9.6.2.1 Modification of Epoxy Resin with Fiber Reinforcement
Effect of External Pressure (i.e., Cyclic Loads) on Epoxy Resin-Bonded Polymer Composite Performance
Effect of Internal Pressure (i.e., Water) on Epoxy Resin-Bonded Polymer Composite Performance
Combined Effect of External and Internal Pressures on Epoxy Resin-Bonded Polymer Composite Performance
9.6.2.2 Modification of Epoxy Resin with Powder Fillers
Epoxy Composite
Powder Fillers
9.6.2.3 Physical Parameters of Powder Fillers
Specific Surface
Shape
9.6.2.4 Surface Modification Methods
Acidic or Basic Solutions
Coupling Agents
Microorganisms
9.7 Methodology
9.7.1 Materials and Methods
9.7.1.1 Materials
Unmodified Epoxy Resin
Curing Agent
Filler
Surface Modifying Agent
9.7.1.2 Methods
Preparation of Unmodified and Modified Epoxy Resin
Optimization of Mechanical Properties of Adhesive with Filler
MATLAB Code Used for Model Development
Experimental Validation and Simulation
Shape, Dimension, and Fabrication of the Unmodified and Modified Samples
Combined Cyclic Loading and Seawater Aging
Microstructural Analysis of Deformed Samples
9.8 Contribution to Knowledge
9.9 Ethical Considerations
9.10 Dissemination
9.11 Budget (Table 9.13)
9.12 Time Frame (Table 9.14)
References
Chapter 10: Aircraft Engine Fan Blade Design: Impact Tolerance Prediction of Partially Filled 3D Printed Aluminum, Titanium, and PEEK-Filled Waste Metal Dusts
10.1 Introduction
10.2 The Problem Statement
10.3 Research Hypotheses
10.4 Research Objectives
10.4.1 Main Objectives
10.4.2 Sub-Objectives
10.5 The Assumptions
10.6 The Project Deliverables
10.7 Importance of Study
10.7.1 Benefits to the Academia, Research, and Development
10.7.2 Benefits to the Industry
10.7.3 Benefits to South Africa
10.8 Overview of the Study
10.9 Literature Review
10.9.1 Introduction
10.9.2 Review of Publications: Present and Past
10.9.2.1 Review of Articles on the Impact of Infill Density on the Mechanical Characteristics of 3D Printed Components
10.9.2.2 A Review of Publications on Selective Laser Melted Aluminum Alloys for Development of Aerospace Components
10.9.2.3 An Analysis of Articles on the Use of Selective Laser Melting to Create PEEK for Aerospace Components
10.9.2.4 A Review of Works on Selective Laser Melting of Ti–6Al–4V for Use in Aerospace Parts
10.10 Research Methodology
10.10.1 Material Study and Selection
10.10.1.1 Material Study
10.10.1.2 Material Selection
Unmixed Material
Composite Materials
10.10.2 Methods
10.10.2.1 Scaling and Similitude of Turbine Blade
10.10.2.2 Optimization in the Abaqus Environment Using TOSCA
10.10.2.3 Impact Analysis in Abaqus Based on Tosca’s Optimal Solutions
10.10.2.4 3D Printing of the Turbine Blade
10.10.2.5 Experimental Validation
10.10.2.6 Measurements and Microstructural Analysis of Damaged Samples
Scanning Electron Microscopy (SEM)
Electron Backscatter Diffraction (EBSD)
X-Ray Diffraction (XRD)
10.11 Project Plan and Financial Budget
10.11.1 Project Plan
10.11.2 Financial Budget
References
Part VI: Preparation and Characterization of Hydrotalcite-Derived Material from Mullite-Rich Tailings
Chapter 11: Preparation and Characterization of Hydrotalcite-Derived Material from Mullite-Rich Tailings (I): Transesterification of Used Cooking Oil to Biodiesel
11.1 Introduction
11.2 Problem Statement
11.3 Research Objectives
11.3.1 Main Objective
11.3.2 Sub-objectives
11.4 Research Hypotheses
11.5 Significance of Study
11.6 Literature Review
11.6.1 Introduction
11.6.2 Biodiesel Production in South Africa
11.6.3 Manufacturing Cost of Biodiesel in South Africa
11.6.4 The Choice of Feedstock and Its Impact on Biodiesel Production
11.6.5 Soybean in South Africa
11.6.6 Waste from Soybean Production
11.6.7 Proactive Measures for South Africa’s Biodiesel Industry
11.6.8 Transesterification of WCO to Biodiesel
11.6.9 Production of Hydrotalcite from Natural Resources
11.6.9.1 Natural Dolomite
11.6.9.2 Bittern
11.6.9.3 Blast Furnace Steel Slag
11.6.9.4 Aluminum Slag
11.6.9.5 Oil Shale Ash
11.6.9.6 Coal Fly Ash
11.6.9.7 Mullite-Rich Tailings from Density-Separated Waste Copper Dust (WCD)
11.7 Methodology
11.7.1 Introduction
11.7.1.1 Materials
Waste Cooking Oil
Waste Metal Dusts
11.7.1.2 Methods
Preparation of WCO Feedstock for Transesterification
Density Separation of WCD
Optimization of Hydrotalcite Production from MRT
Optimization of Catalytic Activity
Characterization of Biodiesel
11.7.2 Contribution to Knowledge
11.7.3 Ethical Considerations
11.7.4 Dissemination
11.7.5 Budget (Table 11.12)
11.7.6 Time Frame (Table 11.13)
References
Chapter 12: Preparation and Characterization of Hydrotalcite-Derived Material from Mullite-Rich Tailings (II): CO2 Capture from Coal-Fired Thermal Power Plants
12.1 Introduction
12.2 Problem Statement
12.2.1 Economic Problems
12.2.2 Environmental Problems
12.2.3 Social Problems
12.3 Research Objectives
12.3.1 Main Objective
12.3.2 Sub-Objectives
12.4 Research Hypotheses
12.5 Significance of Study
12.6 Literature Review
12.6.1 Introduction
12.6.2 Review: Past and Current Publications
12.6.2.1 A Review of Works on the Definition of Problems and Formulation of Solutions
Problem definition
Solution Formulation
12.6.2.2 Review of Publications on Technological Routes for CO2 Capture
Absorption Technology
Membrane Separation Technology
Cryogenic Separation Technology
Adsorption Technology
12.6.2.3 Review of Papers on Various Fly Ash-Based Sorbent Types That Have Been Prepared and Characterized
Potassium-Based Sorbents
Activated Carbon
Sodium Silicate Sorbents
Mesoporous Silica Materials
12.6.2.4 CO2 Aluminosilicate Sorbents
Zeolites
Hydrotalcites (HT)
12.6.2.5 Preparation and Characterization of Hydrotalcite-Derived Material from Various Feedstocks
Natural Dolomite
Bittern
Blast Furnace Steel Slag
Aluminum Slag
Oil Shale Ash
Coal Fly Ash
Mullite-Rich Tailings
12.7 Methodology
12.7.1 Materials and Methods
12.7.1.1 Materials Description and Preparation
12.7.1.2 Methods and Processes
Density Separation of WCD
Synthesis of Hydrotalcite HTMRT
Characterization and Measurement
CO2 Sorption on Synthesized HTMRT
12.8 Contribution to Knowledge
12.9 Ethical Considerations
12.10 Dissemination
12.11 Budget (Table 12.6)
12.12 Time Frame (Table 12.7)
References
Index