Recycling Technologies for Secondary Zn-Pb Resources

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This book is a reflection of all aspects of secondary Zn and Pb processing, including the global business trends of the metals, plant operations, fundamental developments, emerging technologies, and environmental considerations. It stands as a ready reference for the processing, engineering, and research communities concerned with the latest developments in the hydrometallurgical and pyrometallurgical processing of secondary Zn-Pb resources.


Author(s): Muammer Kaya
Series: The Minerals, Metals & Materials Series
Publisher: Springer
Year: 2023

Language: English
Pages: 474
City: Cham

Preface
Introduction
Memoriam
Contents
About the Editor
Chapter 1: Global Lead and Zinc Resources, Production and Secondary Industry
1 Global Pb Reserves and Production
2 The Secondary Pb Industry
3 Global Zn Reserves and Production
4 Direct Zn Leaching Technology
5 The Secondary Zn Industry
5.1 Electric Arc Furnace Dust (EAF)
5.2 Galvanizing Process Wastes
5.3 Pyrometallurgical Processing of Secondary Zn Resources
5.4 Electrolytic Roasting-Leaching-Electrolysis (RLE) Process for ZnS Ores
5.5 Melting Cathodes
6 Economics of Secondary Feeds Versus Concentrates
References
Chapter 2: Assessment of Secondary Zinc and Lead Resources
1 Classification of Primary and Secondary Resources
2 Assessment of Secondary Zinc Reserves of Nations
3 Estimated Secondary Zinc Reserves and Their Comparison with Primary Zinc Reserves
4 About Life Cycle Assessment
4.1 IZA Role in LCA
4.2 Material Stewardship
4.3 About Cycles, Recycling, and Circular Economy
4.4 The Zn Cycle—Zinc Stocks and Flows Analysis
5 Steel Industry By-Products
6 Recent Trends for Secondary Processing
7 Assessment of Lead Resources
7.1 Lead Life Cycle Assessment
7.2 Material Stewardship
7.3 Lead Recycling
8 Hazardous Waste Assessment and Classification
9 Conclusions
References
Chapter 3: Zinc Extraction; In Brief Review from Past to Present
1 Introduction
1.1 Brief History
2 Zinc Production Methods
2.1 Pyrometallurgical Production of Zinc Metal
2.2 Hydrometallurgical Production of Zinc Metal
3 Current Situation
3.1 Direct Atmospheric Leach
3.2 Zn Calcine Leach
3.3 Zn Silicate Leaching
3.4 Solution Purification
3.5 Zn Solvent Extraction
3.6 Electrowinning with Jumbo Cathodes
3.7 Zn Melting and Casting
References
Chapter 4: Galvanizing Residue and Electrical Arc Furnace (EAF) Dust
1 Introduction
2 Zinc Recycling Background
2.1 Galvanizing Residues Recycling
2.2 EAF Dust
3 Recycling Practice and Technology
3.1 Electric Arc Furnace Process
4 Pyrometallurgical Processes for Recycling of EAF Dust
4.1 The Waelz Kiln Technology in EAF Dust Recycling
4.2 Why Pelletize EAF Dust?
4.3 Briquetting EAF Dust
4.4 Considerations in Recycling EAF Dust
5 EAF Dust Pyrometallurgical Treatment Process
5.1 Rotary Hearth Furnace (RHF) Process
5.2 Electric Smelting Reduction Furnace (ESRF) Process
5.3 Plasma Shaft Furnace
5.4 The Submerged Arc Technology
5.5 PRIMUS Process
5.6 OXYCUP Process
5.7 Coke-Packed Bed Process
5.8 Ausmelt Process
5.9 Plasma Dust Process
5.10 Submerged Plasma Process (SPP)
5.11 PIZO Process
5.12 Thermal Plasma Reduction Process
5.13 Solar Thermal Reduction Process
5.14 Iron Bath Smelting Process (IBSP)
5.15 Calcification Process
5.16 Halogenation Process
5.17 Other Thermic Processes
6 Slag Use and Application Areas
7 Improving Zinc Recovery from EAF Dust by Switching from Conventional Heating to Microwave Heating
8 Sulphating Roasting
9 INDUTEC/EZINEX Integrate Process on Secondary Zinc-Bearing Materials
10 Evaluation of Pyrometallurgical EAF Dust Processes
11 Some Important Zinc Operations in the World
11.1 AZR (American Zinc Recycling), USA
11.2 Steel Dust Recycling (SDR), Millport, Alabama, USA
11.3 Zinc Nacional, Mexico
11.4 Recytech, Pas-de-Calais, France
11.5 Befesa
11.6 Isfahan Zinc Smelting, Isfahan, Iran
12 Scrap Zn/Pb Recycling Statistics—Industry Associations
13 Conclusions
References
Chapter 5: H₂SO₄ Leaching of Zn Secondaries
1 Sulfuric Acid (H₂SO₄) and Its Effect on Leaching
2 Effect of Leaching Temperature
3 Effect of Reagent Concentration
4 Effect of Particle Size
5 Effect of Solid/Liquid (S/L) Ratio
6 Effect of Oxidants in H₂SO₄ Leaching
7 Effect of H₂SO₄ Concentration, Leaching Temperature, and Leaching Time on Metal Dissolution for Turkish Oxidized Pb–Zn Flotation Tailing
8 Previous Primary and Secondary Zn Leaching Studies
9 Sulfating Roasting of Zn-Ferrite
10 EAF Dust Processing Flowsheet
11 Conclusions
References
Chapter 6: Hydrometallurgical Recovery of Zinc from By-Products and Waste Materials of Hot-Dip Galvanizing Process
1 Introduction
2 Zinc Ash
2.1 Chemical and Phase Composition
2.2 Leaching
2.3 Purification of Leaching Liquor
2.4 Strategies of Chlorine Removal
2.5 Zinc Recovery
2.6 General Schemes
3 Bottom Dross
4 Flux Skimming
5 Spent Pickling Solutions
5.1 Ion-Exchange Resins
5.2 Solvent Extraction
5.3 Membrane Processes
6 Summary
References
Chapter 7: Waste Lead-Acid Battery Recycling Technologies
1 Introduction
2 Lead-Acid Batteries (LABs)
3 Pyrometallurgical Recycling Methods
3.1 Reverberatory Furnace Smelting
3.2 Rotary Furnace Smelting
3.3 Whole Ebonite Battery Smelting
3.4 Top-Submerged Lancing
3.5 Carbothermic Reduction Process
3.6 Outotec Ausmelt TSL Process
3.7 CSC Technology for Secondary Pb Smelting
4 Hydrometallurgical Recycling Routes
5 Industrial Applications from the World
5.1 Engitec Technologies Process
5.2 Aqua Metals, California, USA
5.3 Doe Run, USA
5.4 Kudret Metal Smelting Ind., Eskisehir, Turkey
6 Lead Refining
7 Recent Product/Process Developments
7.1 LABs
7.2 Supersoft Ultra Pb
7.3 Polypropylene Recovery
7.4 Effect of Li-Ion Batteries on Pb Recycling
7.5 Stabilization of Slag from Secondary Pb Smelter
7.6 Wet Electrostatic Precipitator (WESP) and Regenerative Thermal Oxidizer (RTO)
8 China Pb Market Prices
9 Secondary Lead Smelting: National Emission Standards for Hazardous Air Pollutants (NESHAP)
10 Conclusions
References
Chapter 8: Leaching of H₂SO₄, Citric Acid, and Malic Acid Leached Pb and Ag Residues (Electrohydrometallurgical Process)
1 PbSO₄ Leach from Lead Acid Batteries (LABs)
2 Brine Leaching of Lead Compounds
2.1 Water and Brine Chlorination Leach of Optimum H₂SO₄ Leach Residue
3 NaOH Leach of H₂SO₄ Leach Residues
4 Comparison of Acidic and Alkaline Media Processes with RLE Waelz Process
5 Case Study: Leaching of Turkish Oxidized Pb–Zn Flotation Tailing Using Water, NaCl, and CaCl₂
5.1 Water Leaching of the Turkish PbSO₄ Residue
5.2 NaCl Leach of the Turkish PbSO₄ Residue
5.3 NaCl Leach of Other PbSO₄ Residues
5.4 CaCl₂ Leach of Turkish H₂SO₄ Leach Residue
5.5 CaCl₂ Leach of Other PbSO₄ Residues
5.6 NaOH Leach of the Turkish H₂SO₄ Leach Residue
5.7 NaOH and Glycerol Leach of the Turkish PbSO₄ Residue
5.8 NaOH, Glycerol, and Ascorbic Acid Leach of the Turkish PbSO₄ Residue
5.9 NaOH and Potassium-Sodium Tartrate Leach of the Turkish PbSO₄ Residue
5.10 Malic Acid Leach of the Turkish H₂SO₄ Leach Residue
5.11 Acetic Acid Leach of the Turkish H₂SO₄ Leach Residue
5.12 Sodium Citrate (Na₃C₆H₅O₇) (SC) Leach of H₂SO₄ Leach Residue
5.13 NaOH Leach of the Turkish Citric Acid Leach Residue
5.14 NaCl Leach of the Turkish Citric Acid Leach Residue
5.15 Acetic/Ethanionic Acid (CH₃COOH) Leach of Turkish Citric Acid Leach Residue
5.16 Urea (CH₄N₂O) Leach of the Turkish Citric Acid Leach Residue
5.17 Oxalic Acid Leach of the Turkish Citric Acid Leach Residue
5.18 NaOH and Potassium-Sodium Tartrate (PST) Leach of Citric Acid Leach Residue
5.19 Oxalic Acid Leach of the Turkish Malic Acid Leach Residue
5.20 NaOH + Potassium Sodium Tartrate Leach of Malic Acid Leach Residue
5.21 Single Stage Combined/Integrated Leach of Turkish Flotation Tailings
6 Citric Acid + NaNO₃ Leach of Zinc
7 Acetic Acid (CH₃COOH) + Na Citrate (Na₃C₆H₅O₇.2H₂O) Leach of Pb Compounds
8 PbSO₄ Leaching in Citric Acid (CA)/Sodium Citrate (SC) Solutions
9 Precipitation of Fe and Co from Zn Leach Solution with Ammonium Peroxodisulfate
10 Na₂S Precipitation of PbSO₄ Residue
11 Na₂S Precipitation of Pb Brine Leach Solution
12 Case Study: Brine Leach of PbSO₄ Residue
13 Conclusions
References
Chapter 9: Lead Blast Furnace Dust Recycling
1 Introduction
2 Characterization of Lead Smelting Dust
2.1 Chemical Composition
2.2 Phase Distribution
2.3 Morphology
3 Utilization of Lead Smelting Flue Dust
4 Conclusions
References
Chapter 10: Impurity Purification Before Electrowinning
1 Impurity Precipitation Before Electrowinning of Zn
2 Fe Chemical Precipitation/Removal from ZnSO₄ Solution with NaOH/CaO at Different pH Values
3 Pb and Cd Cementation After Fe Precipitation
4 Cu Precipitation (<25 mg/L)
5 Co and Mn Precipitation (<0.1 mg/L and Sb < 0.01 mg/L)
6 As Removal: (USBM RI-9522) (Limit 5 mg/L as)
7 ZnSO₄ PLS Purification by Alkaline Hydrolytic Precipitation
7.1 First-Stage Purification Using NaOH
8 Second Stage Other Impurities Removal Purification with Zn Dust
9 Combination of Primary and Secondary Precipitation Stages
10 Na₂S Precipitation of PbSO₄ PLS
11 Precipitation of the First-Stage H₂SO₄ Residue and Second-Stage NaOH + KNa-Tartrate Leach PLS with Na₂S
11.1 Effect of Precipitation Time at Two Different Na₂S Concentrations
11.2 Effect of Na₂S Volume
11.3 Effect of Temperature and Time
12 Na₂S Precipitation of Pb Brine Leach Solution
References
Chapter 11: Zinc and Lead Solvent Extraction and Electrowinning
1 Solvent Extraction (SX)
1.1 Solvent Extraction Mechanism
1.2 Solvent Extraction from Sulphate Media
1.3 Solvent Extraction of Non-sulfide Zinc
1.4 Hydrometallurgical Production of Zinc Metal
1.5 Leaching, Solvent Extraction, Electrowinning Process
1.6 Organophosphorus Acids for ZnSO₄ Media
1.7 Organophosphorus Acids for Citrate Media
2 Laboratory Scale SX Tests
3 Previous SX Studies
3.1 SX Recovery of Zinc from Municipal Solid Waste
3.2 SX Recovery of Zinc from Waste Zn–C Battery Powder
3.3 SX Recovery of Zinc from Electric Arc Furnace Dust (EAFD)
3.4 SX Recovery of Zinc from Zinc Plant Residue (ZPR)
3.5 Recovery of Zinc from Spent Chloride Brass Pickle Liquors using SX
3.6 Zn SX of ZnSO₄ from Industrial Effluent
3.7 Recovery of Zinc from Mine Tailings using Solvent Extraction
3.8 Zn Extraction from Low-Grade Zn-Oxide Ores by SX and EW
4 Electrowinning (EW)
4.1 Electrowinning of Zinc
4.2 Electrowinning of Lead
4.3 Innovative Novel EW Cell Design Technologies
4.4 Automation in Electrorefining
5 Conclusions
References
Index