Radiation Safety Guide for Nuclear Medicine Professionals

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

The book covers all the radiation safety aspects while working with unsealed radionuclides. Radiation safety plays a significant role in routine nuclear medicine practices and is necessary to protect occupational workers, patients, members of the general public and the environment. A fair knowledge of radiation safety is expected from all nuclear medicine professionals.

Chapters include basics of radiation physics, biological bases of radiation protection, planning and design of nuclear medicine facilities, cyclotron and high dose therapy facilities, radiation safety considerations in nuclear medicine, cyclotron while preparing radiopharmaceuticals. It also includes the working mechanism of radiation detectors, quality assurance of positron emission tomography (PET) and gamma camera, including single photon emission computed tomography (SPECT), emergency preparedness plan, nuclear medicine and CT dosimetry, transport regulations, the role of national regulatory authorities and radioactive waste management. The last chapter provides probable model questions asked in the radiological safety officer certification examination and includes 250 multiple-choice questions (MCQs), 100 true or false, 60 fill in the blanks, and 40 match the following questions. The book is written in a simple language for a better understanding of the occupational workers of any grade.

It serves as reference material for nuclear medicine professionals on radiation safety, related to planning, quality assurance, dosimetry and various regulations pertaining to nuclear medicine. It is a ready reckoner for the students pursuing a degree/diploma in nuclear medicine and preparing for certification courses in radiation safety to understand the subject matter along with options to attempt practice questions.

Author(s): Pankaj Tandon, Dibya Prakash, Subhash Chand Kheruka, Nagesh N. Bhat
Publisher: Springer
Year: 2022

Language: English
Pages: 370
City: Singapore

Preface
Acknowledgements
Contents
1: Basics of Radiation Physics
1.1 Introduction
1.2 Chronological Events of Radiation Interaction
1.2.1 Physical Interaction of Radiation
1.2.2 Chemical Steps of Interactions
1.2.3 Biological Interactions
1.3 Atomic Structure
1.3.1 The Electrons
1.3.2 The Nucleus
1.4 Properties of Radioactive Materials and Radiation Sources
1.4.1 Stability of a Radionuclide
1.4.2 Binding Energy
1.4.3 Radioactive Decay Scheme
1.5 Radioactive Decay and Decay Series
1.5.1 Basic Concepts of Radioactivity
1.5.2 Positron Emission
1.5.3 Electron Capture
1.5.4 Alpha Emission
1.6 Concept of Half-Life
1.7 Specific Activity
1.8 Average (Mean) Life
1.9 Successive Radioactive Transformation: Radioactive Decay Chains
1.10 Artificial Sources of Radiation
1.10.1 X-Rays
References
2: Radiation Quantities and Units
2.1 Activity, ‘A’
2.2 Kerma, ‘K’ (Kinetic Energy Released per Unit Mass)
2.3 Exposure, ‘X’
2.4 Dose, ‘D’
2.5 Equivalent Dose, ‘HT’
2.6 Effective Dose, ‘E’
2.7 Collective Effective Doses, ‘S’
2.8 Annual Limit on Intake (ALI)
2.9 Derived Air Concentration (DAC)
Reference
3: Interaction of Ionizing Radiation with Matter
3.1 Section 1: Interaction of Radiation with Matter
3.1.1 Interaction of Charged Particles
3.1.1.1 Radiative Collision
3.1.1.2 Range of Charged Particles in Matter
3.1.2 Electromagnetic Radiations
3.1.2.1 Photoelectric Absorption (Effect)
3.1.2.2 Compton Scattering
3.1.2.3 Pair Production
3.1.3 Attenuation of Gamma Radiation in Matter
3.1.4 Interaction of Neutrons
3.1.5 Nuclear Cross-Section (σ)
3.2 Section 2: Production of Radionuclides Used in Nuclear Medicine
3.2.1 Reactor Based
3.2.1.1 Nuclear Reaction (n,γ)
3.2.1.2 Standard β Emitters for Internal Radiotherapy
32P (T½ = 14.3 days)
89Sr (T½ = 50.5 days)
90Y (T½ = 2.7 days)
131I (T½ = 8.02 days)
153Sm (T½ = 1.93 days)
177Lu (T½ = 6.65 days)
188Re (T½ = 17.0 h)
3.2.1.3 Standard α Particle Emitters for Targeted Therapy
211At (T½ = 7.2 h).
213Bi (T½ = 45.6 min)
223Ra (T½ = 11.4 days)
225Ac (T½ = 10.0 days)
3.2.2 Cyclotron Based
3.2.3 Generator Based
3.2.3.1 Generator for 99Mo/99mTc
Type of Wet Column
Dry Column Type
3.2.4 Generator-Produced Standard Positron Emitters
3.2.4.1 68Ge/68Ga Generator System
3.2.4.2 82Sr/82Rb Generator System
References
4: Radiation Protection Standards in Relation to ICRP Recommendations
4.1 Introduction
4.2 Radiation Effects
4.2.1 Deterministic Effects
4.2.2 Prenatal Effects
4.2.3 Stochastic Effects
4.2.3.1 Radiation Carcinogenesis
4.2.3.2 Genetic Effects
4.3 Weighing Factors Used in Radiation Protection
4.3.1 Radiation Weighting Factor
4.3.2 Tissue Weighting Factor
4.4 Risk Projection Models
4.4.1 Nominal Fatality Probability Coefficients
4.4.2 Dose and Dose Rate Effectiveness Factor
4.5 Detriments
4.6 Dose Limits
4.7 Principle of Implementation of Radiation Protection
4.8 Summary
References
5: Radiation Hazard Evaluation and Control in Nuclear Medicine
5.1 Introduction
5.2 External Radiation Hazard
5.2.1 The Term ‘Exposure’
5.2.2 Exposure Rate
5.2.3 Exposure Rate Constant
5.3 Control of External Radiation Hazards
5.3.1 Strength of the Source
5.3.2 Shielding
5.3.2.1 Half-Value Thickness (HVT) and Tenth-Value Thickness (TVT)
5.3.2.2 Relationship Between HVL and TVL
5.3.2.3 The Buildup Factor
5.3.3 Distance
5.3.4 Time
5.4 Internal Radiation Hazard
5.4.1 Effective Half-Life
5.4.2 ALI and DAC
5.4.3 Surface Contamination
References
6: Occupational and Public Exposure to Nuclear Medicine
6.1 Introduction
6.2 Type of Exposures
6.2.1 Planned Exposures
6.2.2 Emergency Exposures
6.2.3 Existing Exposure Situations
6.3 Categories of Exposures
6.3.1 Occupational Exposure
6.3.2 Public Exposure
6.3.3 Medical Exposure
6.4 Identification of Exposed Individuals
6.4.1 Workers
6.4.2 Members of the Public
6.4.3 Patients and Comforters
6.5 Death of Patient-Administered with Radiopharmaceutical
6.6 Possibilities of Exposure in Nuclear Medicine
6.7 Elimination of Radionuclides from Internal Routes
6.8 Effective Half-Life
6.8.1 Estimation of Effective Dose
6.8.2 Dose to Extremities and Individual Organs
6.8.3 Occupational Exposure of Women
6.8.4 Apprentices and Students
6.9 Methods to Prevent or Reduce the Dose to Occupational Workers
6.9.1 Storage of Source
6.9.2 Essential Points in Planning Work
6.9.3 Handling of Sources
6.10 Overexposure Investigations and Follow-Up
6.11 Occupational Exposures and Dose Records
6.12 Roll of Personnel Monitoring
6.13 Comparison of Occupational Nuclear Medicine Laboratories Compared to Other Medical Practices
References
7: Biological Bases of Radiation Protection
7.1 Introduction
7.2 Radiation Effects at Cellular Level
7.2.1 Mechanism of Damage
7.2.2 Nature of Damage
7.2.3 Effects at Cellular Level
7.2.4 Factors Modifying the Damage
7.3 Relative Biological Effectiveness (RBE)
7.4 Law of Bergonie and Tribondeau
7.5 Deterministic and Stochastic Effects
7.6 Acute Radiation Syndrome
7.6.1 Radiation Sickness
7.6.2 Haematopoietic Tissue Damage
7.6.3 Gastrointestinal Tract Damage
7.6.4 CNS Syndrome
7.7 Damage to Individual Organs
7.7.1 Skin
7.7.1.1 Early Effects
7.7.1.2 Skin Late Effects
7.7.2 Gonads
7.7.2.1 Males
7.7.2.2 Female
7.7.3 Eye Lens
7.7.4 Lungs
7.7.5 Endocrine System
7.7.6 Chronic Radiation Sickness
7.8 Stochastic Effects
7.8.1 Carcinogenesis in Human Beings
7.8.2 Genetic Effects
7.9 Summary
References
8: Planning and Design of Nuclear Medicine Imaging Facilities
8.1 Diagnostic Nuclear Medicine Facility
8.1.1 Site Selection
8.1.2 Layout and Area Requirement
8.1.3 Equipment and Accessories
8.1.4 Staff
8.1.5 General
8.2 Shielding Requirement in a Diagnostic Nuclear Medicine Facility
8.3 Shielding Calculation for SPECT-CT and PET-CT Facilities
8.3.1 Shielding Calculation for Uptake Room in the NM Facility (Fig. 8.4)
8.3.2 Shielding Calculation for Imaging Room in the NM Facility
8.3.3 Calculation of the Thickness of the Ceiling above the PET-CT Facility
Reference
9: Planning and Design of High-Dose Therapy Facility
9.1 Therapeutic Nuclear Medicine
9.1.1 Site Selection
9.1.2 Layout and Area Requirement
9.1.3 Equipment and Accessories
9.1.4 Staff
9.1.5 General
9.2 Isolation Ward for Hospitalization of Patients
9.3 Shielding Requirement in an Isolation Ward
9.4 Delay-Decay Tank for Storage of Radioactive Waste
Reference
10: Planning and Design of Medical Cyclotron Facility
10.1 Selection of Site
10.2 Approval of Layout Plan of Medical Cyclotron
10.3 Staff Requirement in Medical Cyclotron
10.4 Personnel Monitoring of Staff Members
10.5 Supply of Cyclotron-Produced Radionuclides to Users and Transportation
10.6 Radiation Monitoring Devices
10.7 Radiation Safety Devices
10.8 Transport of Individual Dosages
10.9 Typical Model for the Medical Cyclotron
10.10 Shielding Calculation for Medical Cyclotron
10.10.1 Shielding Calculations for Unshielded Medical Cyclotron
10.10.2 Shielding Calculations for Self-Shielded Medical Cyclotron
Reference
11: Personnel Monitoring and Radiation Protection Survey in Nuclear Medicine
11.1 Introduction
11.2 Objectives of Personnel Monitoring
11.3 Benefits of Personnel Monitoring
11.4 Devices
11.5 Dose Limits in Planned Exposure Situations for Radiation Workers
11.6 Dose Limits in Emergency Exposure Situations for Radiation Workers
11.7 Dose Limit for Medical Exposures
11.8 Dose Record of Occupational Exposures
11.9 Personal Monitoring During Pregnancy
11.9.1 Radiation-Induced Malformations
11.10 Overexposure Investigation and Follow-Up
11.11 Situations Not Warranting Personnel Monitoring
11.12 Survey of Nuclear Medicine Facility
11.13 Area and Environmental Monitoring
11.14 External Contamination Monitoring
11.14.1 Surface Monitoring
11.14.2 Air Monitoring
11.15 Monitoring and Surveillance Procedures in Nuclear Medicine
11.16 Conclusion
References
12: Radiation Safety Considerations in Nuclear Medicine
12.1 99mTc Products
12.2 Cyclotron Products
12.2.1 SPECT Product
12.2.2 PET Products
12.3 Radionuclide Therapy (RNT)
12.3.1 131I-MIBG
12.3.2 Products for Radiation Synovectomy
12.3.3 Product of Radio­immunotherapy (RIT) and Radio-Peptide Therapy (RPT)
12.3.4 Products for Loco-Regional Delivery for RNT
12.3.5 Products for Endovascular Radionuclide Therapy (EVRT)
12.4 Other Products and Techniques
12.5 131I Administration
12.6 Radiation Safety Precaution During Pre- and Post-therapy
12.7 Radiation Protection for the Nursing Staff
12.8 Radiation Protection for the Visitors
12.9 Patient Monitoring and Discharge Criteria for Isolation Ward Patients
12.10 Optimisation of Radiation Dose to Non-target Tissues
12.11 Handling Emergency Situations
12.12 Conclusions
13: Radiation Safety Consideration in Medical Cyclotron
13.1 Radiation Surveillance Programme in Medical Cyclotron Facility
13.2 Pregnant Occupational Worker
13.3 Management of Radioactive Waste
13.4 Radiological Surveillance
13.4.1 Area Monitoring
13.4.2 Personnel Monitoring
13.4.3 Contamination Monitoring
13.5 Log Book Keeping
13.6 Decommissioning
Further Reading
14: Radiation Safety Considerations During Radiopharmaceutical Preparation
14.1 Introduction
14.2 The Dose Calibrators
14.2.1 Various Names of Dose Calibrators
14.2.2 Physical Characteristics of Dose Calibrator
14.2.3 Working Mechanism of Dose Calibrators
14.2.4 Choice of Gas in Dose Calibrators
14.2.5 Current Conversion
14.2.5.1 Calibration Factors
14.2.6 Energy-Response Curve
14.2.6.1 Theoretical Dependence on Energy of Photons for Competitive Photoelectric Effect and Compton Scattering
14.2.6.2 Photoelectric Effect Probability Dependence on Energy of a Photon in Argon Gas
14.2.6.3 Compton Scattering Probability
14.2.7 Major Sources of Error in Measurements [4]
14.2.7.1 Calibration Factor
14.2.7.2 Electronics
14.2.7.3 Statistical Variations
14.2.7.4 Ion Recombination
14.2.7.5 Effects of Background
14.2.7.6 Size and Shape of Source Container and Effects of Volume
14.2.7.7 Effects on the Source Position
14.2.7.8 Source Adsorption on the Container Surface
14.2.8 Measuring Pure Beta Emitters
14.2.9 Effects of Contaminants
14.2.10 Dose Calibrators Acceptance and Routine Testing
14.2.10.1 Accuracy and Constancy
14.2.10.2 Linearity
14.2.10.3 Geometry Response
14.2.11 Materials Needed for Quality Control of Dose Calibrators
14.2.12 Test of Accuracy and Constancy
14.2.12.1 Procedure
14.2.13 Measurement of Linearity of Dose Calibration
14.3 Radiopharmaceutical Dispensing to Patients
14.3.1 Dosage Calculation for Heavyweight Patients
14.3.2 Paediatric Dosage Calculations
14.4 Medical Events (Formerly Misadministration)
14.4.1 Medical Event Reporting
14.5 Control of Radiation Hazards in Radiopharmacy
14.5.1 Safety Aspects
14.5.2 Essential Points in Planning Work
14.5.3 Handling of Sources
14.5.4 Storage of Source
14.5.5 Monitoring
14.5.5.1 Wipe Tests and Daily Surveys
14.6 Decontamination of Working Area and Equipment
14.6.1 Personnel Decontamination
14.6.1.1 Internal Contamination
14.6.2 External Contamination
14.6.3 Surface Decontamination
14.7 Radioactive Waste Disposal
14.8 Record-Keeping in Radiopharmacy [4]
14.8.1 Quality Control Records
14.8.2 Records of Radioactive Materials (RAM) Received
14.8.3 Radiopharmaceutical Preparation and Dispensing Records
14.8.4 Radioactive Waste Disposal Records
References
15: Working Mechanism of Radiation Detectors Used in Nuclear Medicine
15.1 Introduction
15.2 Interaction of Radiation with Matter
15.3 Definition of Radiation Detector
15.4 Characteristics of Good Radiation Detection System
15.5 Types of Detectors
15.6 Radiation Detection Mechanism
15.6.1 Gas-Filled Detectors
15.6.1.1 Voltage-Response Curve
Ionization Chamber Region
Proportionality Region
Region of Limited Proportionality
Geiger-Muller (GM) Region
Region of Continuous Discharge
15.6.2 Ionization Chamber Detectors
15.6.2.1 Pocket Dosimeters
15.6.2.2 Digital Pocket Dosimeter
15.6.2.3 Gun Monitor
15.6.2.4 Dose Calibrators
15.6.3 Proportional Counters
15.6.4 Geiger–Müller (GM) Counters
15.6.5 Scintillation Detectors
15.6.6 Computed Tomography (CT) Detectors
15.6.7 Semiconductor Detectors
15.6.7.1 Mechanism of Detection
15.6.7.2 Properties of CZT (Cd1-xZnxTe) Detectors
15.6.8 Thermoluminescent Dosimeters (TLDs)
15.6.8.1 CaSO4:Dy TLDs
Mechanism of Detection
15.6.8.2 Disadvantages of CaSO4:Dy TLDs
References
16: Quality Control of Planar Gamma Camera and Single-Photon Emission Computed Tomography
16.1 Introduction
16.2 Acceptance and Reference Tests
16.3 Routine Quality Control
16.4 Action Thresholds, Follow-Up, Record Keeping, Review, and Monitoring
16.5 Daily Operating Care and Maintenance for a Scintillation Camera
16.6 Preparatory Steps
16.7 Preventive Maintenance and Calibrations
16.8 Radionuclides for Testing
16.9 Test Equipment and Manuals
16.10 Physical Inspection
16.10.1 Physical Condition
16.10.2 Safety Interlocks
16.10.3 Camera Detector Shielding
16.11 Computer Monitor Inspection: Monitors Used for Image Processing and Image Interpretation
16.12 Acceptance Reference Tests
16.13 Routine Tests
16.14 Periodical Tests
16.15 Gamma Camera Planar Tests
16.15.1 Flood Field Uniformity
16.15.1.1 Gamma Camera Detector Setup and Source Placement
Energy Window Width and Peak
16.15.1.2 Test of Intrinsic Flood Field Uniformity
Purpose of Test
Materials
Procedure
Analysis
Image Analysis
Report
Performance Specifications
16.15.1.3 Test of System Flood Field Uniformity
Purpose of Test
Materials
Procedure
16.15.1.4 Data Analysis
Report
Performance Specifications
16.15.1.5 Intrinsic Off-Peak Flood Field Uniformity
Frequency
Image Acquisition
Image Analysis
Report
Performance Specifications
16.15.2 Spatial Linearity
16.15.3 Spatial Resolution
16.15.4 Intrinsic Tests of Spatial Resolution and Spatial Linearity
16.15.4.1 Frequency
16.15.4.2 Testing Procedure
Slit Phantom Measurement
Image Acquisition
Analysis for Spatial Resolution
Analysis for Spatial Linearity
16.15.5 Intrinsic Resolution Using Bar Phantom
16.15.5.1 Quantification of Spatial Resolution
16.15.6 Extrinsic Spatial Resolution Using Bar Phantom
16.15.6.1 Frequency
16.15.6.2 Procedure for Checking
Image Acquisition
Spatial Resolution Analysis
Spatial Linearity Analysis
Report
16.15.7 Energy Resolution
16.15.7.1 Procedure for Checking
Image Acquisition
16.15.8 Extrinsic Planar Sensitivity
16.15.8.1 Frequency
16.15.8.2 Procedure of Checking
Image Acquisition
Image Analysis
Report
Performance Specifications
16.15.9 Performance of Intrinsic Count Rate
16.15.9.1 Two-Source Method
Frequency
Testing Procedure
16.15.9.2 Two-Source Method
Maximum Peak Count Rate Calculation
16.15.9.3 Report
16.15.9.4 Performance Specifications
16.15.10 Pixel Calibration
16.15.10.1 Purpose
16.15.10.2 Frequency
16.15.10.3 Testing Procedure
16.15.10.4 Image Analysis
Performance Specifications
16.15.11 Multiple Window Spatial Registration (MWSR)
16.15.11.1 Frequency
16.15.11.2 Testing Procedure
Test Source
Image Acquisition
Image Analysis
Report
Requirements for Performance
16.15.11.3 Test of Collimator Hole Angulation
Purpose
Image Acquisition
Image Analysis
16.15.12 Test of Collimator Quantitation Hole Angulation
16.16 Quality Control of SPECT System
16.16.1 Flood Uniformity
16.16.2 Centre of Rotation (COR), Multiple-Head Registration and Head Tilt
16.16.2.1 Preparing a Point Source
16.16.2.2 Procedure for Checking
Point Source Placement
SPECT Acquisition
Projection Image Processing and Analysis
Report and Frequency
16.16.3 Resolution of Tomographic Image
16.16.3.1 Frequency
16.16.3.2 Procedure for Checking
Line Source Placement
SPECT Acquisition
SPECT Image Reconstruction
Planar Image Acquisition
Image Processing and Analysis for Spatial Resolution
MHR, COR and Head Tilt Error Analysis
Report
Performance Specifications
16.16.4 Tomographic Uniformity and Contrast
16.16.4.1 Frequency
16.16.4.2 The Procedure of the Test
How to Prepare the Phantom
Phantom Positioning
Image Acquisition
Reconstruction of Image
Image Analysis
Spatial Resolution
Contrast Delectability
Uniformity
Analysis of Tomography Uniformity
Report
Performance Specifications
16.16.5 SPECT/CT Spatial Registration
16.16.5.1 Frequency
16.16.5.2 Procedure for Checking
Assessment of Spatial Registration
Report
Performance Criteria
Slice Thickness
16.16.5.3 Procedure for Checking
Data Analysis
Report
Performance Criteria
References
17: Quality Assurance in Positron Emission Tomography-Computed Tomography (PET-CT)
17.1 Quality Assurance (QA) Program
17.2 Routine Quality Assurance
17.3 Performance Assessment
17.4 Responsibilities for Quality Control Tests
17.5 Important Points
17.6 Quality Control Records
17.7 Preventive Maintenance
17.8 Acceptance Test Procedures
17.9 Spatial Resolution
17.9.1 Purpose
17.9.2 Material Requirements (Table 17.1)
17.9.3 Activity Requirements
17.9.4 Activity in Point Source at the Start of Data Acquisition
17.9.5 Source Distribution (Fig. 17.1)
17.9.6 The Positioning of the Source (Figs. 17.2, 17.3 and 17.4)
17.9.7 Data Processing
17.9.8 Analysis
17.9.9 Report
17.9.10 Suggested Tolerances
17.9.11 Corrective Action
17.10 Sensitivity
17.10.1 Purpose
17.10.2 Frequency
17.10.3 Material (Table 17.4)
17.10.4 Activity Requirements
17.10.5 Phantom Positioning
17.10.6 Activity Preparation
17.10.7 Line Source Preparation
17.10.8 Data Acquisition (for all Five Sleeves), Processing, and Analysis
17.10.9 Calculations and Analysis
17.10.9.1 System Sensitivity
17.10.9.2 Axial Sensitivity Profile
17.10.10 Tolerances Suggestions
17.10.11 Corrective Measures
17.11 Scatter Fraction, Count Losses, and Randoms Measurement
17.11.1 Purpose
17.11.2 Frequency
17.11.3 Material Requirements
17.11.4 Activity
17.11.4.1 Requirements
17.11.5 Phantom Positioning
17.11.6 Activity Preparation
17.11.7 Line Source Preparation as Shown in Fig. 17.16
17.11.8 Data Acquisition
17.11.9 Data Processing
17.11.10 Symbols
17.11.11 Analysis
17.11.12 Analysis with Randoms Estimate
17.11.12.1 Scatter Fraction
17.11.12.2 Count Rates and NECR
17.11.13 Alternative Analysis with no Random Estimate
17.11.14 Count Rates and NECR
17.11.15 Results
17.11.15.1 Plot of Count Rate
17.11.15.2 Values for Peak Count
17.11.15.3 System Scatter Fraction
17.11.16 Tolerances Suggested
17.11.17 Taking Corrective Action
17.12 Energy Resolution
17.12.1 Purpose
17.12.2 Frequency
17.12.3 Materials
17.12.4 Data Gathering
17.12.5 Analysis
17.12.6 Tolerances Suggested
17.12.7 Taking Corrective Action
17.13 Image Quality, the Accuracy of Attenuation, and Scatter Corrections
17.13.1 Purpose
17.13.2 Frequency
17.13.3 Material Requirements
17.13.3.1 Activity Requirements
17.13.4 Phantom Positioning
17.13.5 Activity Preparation
17.13.6 Preparation of Phantoms (8:1 Activity Concentration Ratio)
17.13.6.1 Prepare Line Source Such as Stated Below
17.13.6.2 Data Acquisition (8:1 Activity Concentration Ratio)
17.13.7 Preparation of Phantoms (4:1 Activity Concentration Ratio)
17.13.7.1 Data Acquisition #2 (4:1 Activity Concentration Ratio)
17.13.8 Processing of Data
17.13.9 Analysis
17.13.9.1 Image Quality
17.13.9.2 Accuracy of Attenuation and Scatter Corrections
17.13.9.3 Accuracy of Radioactivity Quantitation
17.13.9.4 Tolerances Suggested
17.13.9.5 Taking Corrective Action
17.13.10 Resolution of Coincidence Timing in TOF Positron Emission Tomography
17.13.10.1 Purpose
17.13.10.2 Frequency
17.13.10.3 Materials
17.13.10.4 Data Acquisition
17.13.10.5 Analysis
17.13.10.6 Tolerances Suggested
17.13.10.7 Taking Corrective Action
17.14 Well Counter Correction
17.14.1 Purpose
17.14.2 Frequency
17.14.3 Material
17.14.4 Data Acquisition: In Phantom, Fill it with Activity
17.14.5 Result
17.14.6 Tolerance
17.15 Calibration of Activity Concentration in 2D OR 3D17.15.1. Purpose
17.15.1 Test Purpose & Frequency
17.15.2 Material
17.15.3 Data Acquisition
17.15.4 Analysis of Data
17.15.4.1 Result
17.15.5 Tolerance
References
Further Reading
18: Radiation Emergencies in Nuclear Medicine and Preparedness
18.1 Introduction
18.2 Prevention of Radiological Emergencies
18.3 Design and Layout of Nuclear Medicine Department
18.4 Emergency Management Plan
18.5 Emergency Management Kit
18.6 Various Emergency Situations and Their Management
18.6.1 Spill Management and Decontamination Procedure
18.6.1.1 Minor Spill Management
18.6.1.2 Major Spill Management
18.6.1.3 Decontamination
18.6.1.4 Decontamination Monitoring
18.6.1.5 Surface Decontamination
18.6.1.6 Personal Decontamination
18.6.2 Incidental Release of Radioactive Fume, Dust and Gases
18.6.3 Loss or Theft of Radioactive Sources
18.6.4 Damage to 99mTc Generators
18.6.5 Medical Emergencies Involving Radioactivity Administered to Patients
18.6.6 Receipt of Broken FDG Vial
18.6.7 Fire
18.6.8 Unauthorized Access to Radiation Area
18.6.9 Medical Events (Formerly Mis-Administration)
18.6.10 Death of Patient Administered with Radiopharmaceuticals
18.6.11 Emergencies During Transport of Radioactive Material
References
19: Nuclear Medicine Internal Dose Assessment
19.1 The Term ‘Dosimetry’
19.2 The Need
19.3 ALARA and AHASA Concepts in RNTs
19.4 The Term ‘Absorbed Dose’
19.5 Dose Rate
19.6 Absorbed Dose Calculation and its Components
19.7 Assigning Numerical Values
19.8 Organ Mass
19.9 Specific Absorbed Fraction (SAF)
19.10 Various Systems of Dose Assessment Calculations
19.10.1 Medical Internal Radiation Dosimetry (MIRD) Formalism
19.10.1.1 Strengths and Inherent Limitations in the Formalism
19.10.2 The International Commission on Radiation Protection (ICRP)
19.10.2.1 Equivalent Dose
19.10.2.2 Effective Dose
19.10.2.3 Determination of Tissue Weighing Factors and Effective Dose
19.10.2.4 Use of Effective Dose
19.10.2.5 Limitations of Effective Dose
19.10.3 Radiation Dose Assessment Resource (RADAR) Task Force Method
19.11 Free Websites for Diagnostic Dose Estimation
19.12 Dose Assessment in Therapeutic Nuclear Medicine
19.12.1 Time-Integrated Activity Estimation
19.12.2 Obtaining System Sensitivity
19.12.3 Image Quantification
19.12.4 Scatter Corrections
19.12.5 Corrections for Background Activity
19.12.6 Tomographic Imaging
19.13 Conclusion
References
Untitled
20: Computed Tomography Dose Assessment
20.1 Introduction
20.2 Design and Working Principle of CT Scan Machines
20.2.1 PET-CT Scanners
20.3 CTDI
20.4 CTDI100
20.5 CTDIw
20.6 CTDIvol
20.7 DLP
20.8 CT Dosimetry Phantoms
20.9 Size-Specific Dose Estimate (SSDE)
20.10 CT Doses
20.11 Estimating Effective Doses
20.11.1 Calculation of Effective Dose Using Dose Reports
20.12 Diagnostic Reference Levels (DRL) and Achievable Dose (AD)
References
Untitled
21: Transport of Radioactive Material
21.1 Regulatory Aspects
21.2 Definitions of the Terms Used
21.2.1 Radioactive Material
21.2.2 Special Form Radioactive Material
21.2.3 A1 and A2 Values
21.2.4 Contamination
21.2.5 Exclusive Use
21.2.6 Surface Contaminated Object
21.2.7 Package
21.2.7.1 Excepted Package
21.2.7.2 Excepted Limit of Activity of a Radioisotope
21.2.7.3 Industrial Packages (Type IP-1, Type IP-2, Type IP-3)
21.2.7.4 Type A Package
Requirements of Type-A Package
21.2.7.5 Type B(U)/(M) Package
21.2.7.6 Type C Package
21.3 Contamination Level for Packages
21.4 Categories of Packages
21.5 Marking, Labelling, and Placarding
21.5.1 Marking
21.5.2 Labelling
21.5.3 Placarding
21.6 Transport Documents
References
22: Legislation and Role of National Regulatory Authority in Nuclear Medicine
22.1 Introduction
22.2 The Atomic Energy Act
22.2.1 Rules Issued Under the Act
22.2.2 Surveillance Procedures Issued Under the Rules [2]
22.3 Safety Code for Nuclear Medicine Facilities
22.3.1 The Employer
22.3.2 Licensee
22.3.3 The Radiological Safety Officer
22.3.3.1 In Addition to the Above, R.S.O. of High Dose Therapy Shall
22.3.4 Nuclear Medicine Physician
22.3.5 Nuclear Medicine Technologist
22.4 Conclusion
References
23: Radioactive Waste Disposal and Safe Management of Disused Sealed Radioactive Sources
23.1 Fundamental Radioactive Waste Management (RWM) Principles
23.2 Classification of Wastes
23.3 Radioactive Waste Collection
23.4 Radioactive Waste Disposal
23.4.1 Solid Waste
23.4.2 Liquid Waste
23.4.3 Incineration of Wastes
23.5 Record Keeping
23.6 Management of Cadavers Containing Radionuclides
23.7 Disposal of Disused Sealed Radioactive Sources (DSRS)
24: Model Questions for Radiological Safety Certification Examination in Nuclear Medicine
24.1 Questions for RSO Exams
24.1.1 Section A
24.1.1.1 Multiple Choice Questions
24.2 Section B
24.2.1 State True or False
24.3 Section C
24.3.1 Fill in the blanks
24.4 Section D
24.4.1 Match the following:
24.4.2 Indicate whether the following effects are Stochastic (S) or Deterministic (D).
24.4.3 Match the following
24.4.4 Match the following:
24.5 Keys
24.5.1 Section A: Multiple Choice Questions
24.5.2 Section B: True/False
24.5.3 Section C: Fill in the Blanks
24.5.4 Section D: Match the Following