Radiation Protection in Medical Physics

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This book introduces the fundamental aspects of Radiation Protection in Medical Physics and covers three main themes: General Radiation Protection Principles; Radiobiology Principles; Radiation Protection in Hospital Medical Physics. Each of these topics is developed by analysing the underlying physics principles and their implementation, quality and safety aspects, clinical performance and recent advances in the field. Some issues specific to the individual techniques are also treated, e.g. calculation of patient dose as well as that of workers in hospital, optimisation of equipment used, shielding design of radiation facilities, radiation in oncology such as use of brachytherapy in gynecology or interventional procedures. All topics are presented with didactical language and style, making this book an appropriate reference for students and professionals seeking a comprehensive introduction to the field as well as a reliable overview of the most recent developments.

Author(s): Yves Lemoigne, Alessandra Caner
Series: NATO Science for Peace and Security Series B: Physics and Biophysics
Edition: 1st Edition.
Publisher: Springer
Year: 2010

Language: English
Pages: 213
Tags: Биологические дисциплины;Биофизика;

Cover......Page 1
NATO Science for Peace and Security Series: B. Physics and Biophysics......Page 3
Radiation Protectionin Medical Physics......Page 4
ISBN 9789400702462......Page 5
Preface......Page 6
Contents......Page 8
LIST OF ASI-983455 Contributors......Page 12
LIST OF ASI-983455 Participants: Directors,Students and Lecturers......Page 14
Part I: General Radiation Protection Principles......Page 22
1 Introduction......Page 24
1.1 Special Compensatory Arrangements......Page 27
References......Page 28
1 Introduction......Page 30
2 Definitions and Interpretations......Page 31
2.1.1 Computerized Tomography Dose Index......Page 33
3 Occupation Doses......Page 34
4 Dose Constraints......Page 35
Part II: Radiobiology Principles......Page 36
2 The Basic Interaction Processes......Page 38
4.1 Repair Processes......Page 39
4.2 Radiation Induced Processes Influencing the Cell Cycle......Page 42
4.3 Other Effects Contributing to Radiation Sensitivity......Page 43
References......Page 44
1 Introduction......Page 46
2 Cell Survival Curves......Page 47
3 Local Control of a Tumour......Page 48
4 Linear-Quadratic Model......Page 52
4.1 The Linear-Quadratic Model in Practice......Page 54
References......Page 55
Part III: Radiation Protection Applicationin Hospital Medical Physics......Page 56
1 Background to Risk Assessment......Page 58
2 Examples of Elements from Risk Assessments......Page 59
References......Page 61
1 Introduction......Page 62
2 Practical Protection in Radiology......Page 63
1 Introduction......Page 66
2 Some Practical Considerations......Page 67
References......Page 69
1 Justification and Ethical Issues......Page 70
2 Criteria of Acceptability for Equipment......Page 72
References......Page 73
1 Introduction......Page 74
2 Important Quantities Used in Dosimetry of Ionizing Radiation......Page 75
2.1 Energy Transferred......Page 76
2.3 Stopping Power......Page 77
2.4 Electron Equilibrium......Page 78
2.5 Comparison of Absorbed Doses to Two Different Materials......Page 79
3.1 Thimble (Cylindrical) Chamber......Page 80
3.2 Films......Page 82
3.4 Diodes......Page 83
References......Page 84
2.1 Plain Radiography and Fluoroscopy......Page 86
2.2 Computed Tomography......Page 87
4 Dose Assessment in Plain Radiography and Fluoroscopy......Page 88
5 Dose Assessment in CT......Page 91
1 Introduction......Page 96
2.1 Radiopharmaceuticals......Page 97
2.2 Patient Physiology......Page 98
3 Organ Dose Calculations......Page 99
3.1.1 Compartmental Analysis Method......Page 100
3.1.3 Phantoms and Mathematical Models......Page 102
4 Concluding Remarks......Page 104
References......Page 105
1 General......Page 106
2 Release of Patients Following Radionuclide Therapy......Page 108
References......Page 109
2 Radiobiological Considerations......Page 110
3 Regulatory and Good Practice Considerations......Page 111
References......Page 113
1 Introduction......Page 114
2 Dose Distribution......Page 115
3 Choosing the Appropriate Radiation and Its Energy......Page 116
4.1 Number of Beams......Page 119
4.2 Beams Orientation......Page 121
5 Uniformity of Dose Distributions in the Target Volume......Page 122
6 Summary......Page 123
2 Routes to Optimisation......Page 126
4 Quality Assurance and Quality Control......Page 127
5 Image Criteria......Page 129
6 Audit......Page 130
References......Page 131
1.1 Nuclear Reactions and Activation......Page 134
1.1.1 Activation of Beam Line Components (Proton Beam Induced Reactions)......Page 135
1.1.2 Air Activation Reactions (Neutrons Induced)......Page 136
2.1.2 Safety......Page 137
2.2.2 Ventilation and Air Changes: Rules and References......Page 138
2.2.3 Safety......Page 139
3 Cyclotron Shielding Decommissioning......Page 140
References......Page 143
2 Categorisation of Hazard......Page 144
3 Planning and Localisation......Page 145
4.1 Laboratory and Premises Not Frequented by Patients......Page 147
4.1.1 Rooms for Preparation and Dispensing of Radiopharmaceuticals (Hot Lab)......Page 148
4.1.2 Facility for Storage of Radionuclides......Page 149
4.2 Areas Occupied By Patients......Page 150
5 Final Plan and Classification of Areas......Page 151
References......Page 152
1 Introduction: Design of the Radiotherapy Room......Page 154
2.1 Primary Radiation Shielding......Page 155
2.2 Secondary Radiation Shielding......Page 156
2.3 Neutron Transmission......Page 157
2.4 Gamma Transmission......Page 158
3 Brachytherapy Installations......Page 159
References......Page 160
1 Introduction......Page 162
2 System to Monitor Air Contamination in Radiochemistry Labs......Page 163
3 Environmental Safety: Modelling of Dispersion in the Atmosphere of the Contaminated Gassesand Population Dose Estimation......Page 165
4 Safety and Shielding of the Hot Cells......Page 170
6.1 F-18 Model......Page 171
6.2 C-11 Model......Page 172
6.3 A Heuristic1 Model for F-18 and C-11, Which Considers the Following Hypotheses......Page 175
7.1 F-18......Page 176
7.3 Chronic Low Level Exposures Data......Page 177
References......Page 179
1 Introduction......Page 182
2 IR Equipment Performance Assessment......Page 183
2.1 Entrance Surface Air Kerma Rates......Page 184
2.2 Image Quality......Page 185
3 Patient Exposure and Reference Levels in Interventional Cardiology......Page 186
3.1 Coronary Angiography and PTCA Procedures......Page 187
4 Staff Exposure, Intervention and Constraint Dose Values......Page 188
4.2 Occupational Doses in Interventional Cardiac Laboratories......Page 189
References......Page 191
1 Introduction......Page 194
2.2 Organ Accessibility......Page 195
References......Page 196
1 Introduction......Page 198
2.2 GI Procedures......Page 199
2.4 Gynaecology......Page 200
3 Requirements for X-ray Equipment Usedin the Procedures Listed Above......Page 201
4.1 Italy, 2004 [1]......Page 202
References......Page 203
1 Introduction......Page 204
2 The Equipment and Other Instruments Used......Page 205
3.2 The Quality of the Pharmaceutical Used......Page 206
3.3 Amount of Radiopharmaceutical Administered......Page 207
4.1.2 Expectations......Page 208
4.3 New Pharmaceuticals......Page 209
5 Summary......Page 210
1 P. Peschke......Page 212
2 Kukolowicz......Page 213