Progressive Collapse Resilience of Concrete Structures: Mechanisms, Simulations and Experiments

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

The book introduces the comprehensive analysis methodology regarding progressive collapse, and the critical issues may happen in concrete structures. Main topics include: the influential parameters of the development of the main load-resisting mechanisms; the dynamic effects with sudden column removal scenarios; the contribution of non-structural components to improve the resilience of concrete structures; uncertainties in progressive collapse analysis. Based on the empirical research of the author and his team, the book provides valuable knowledge in the field of progressive collapse and bridges the gap between academic research and practice.


Author(s): Kai Qian, Qin Fang
Publisher: Springer-CABP
Year: 2023

Language: English
Pages: 285
City: Beijing

Preface
Contents
About the Authors
1 Introduction
1.1 Research Background
1.1.1 Definitions of Progressive Collapse and Well-Known Progressive Collapse Events
1.1.2 Design Methods to Resist Progressive Collapse
1.2 Standards and Code Provisions for Progressive Collapse
1.2.1 GSA (2003) or (2016)
1.2.2 DoD (2003) or (2009)
1.2.3 CECS392 (2014)
1.3 Advance in Progressive Collapse Study
1.3.1 Advances in Progressive Collapse Study on RC Structures
1.3.2 Advances in Progressive Collapse Study on PC Structures
References
2 Load Resisting Mechanisms of Concrete Structures to Resist Progressive Collapse
2.1 Flexural Action
2.2 Compressive Arch Action
2.2.1 Existing Models for CAA
2.2.2 A New CAA Model Based on Moment–Curvature Relationship
2.3 Catenary Action
2.3.1 Existing Catenary Action Models
2.3.2 Reliability of Existing Catenary Action Models
2.4 Compressive Membrane Action in Two-Way Slab with All Edges Restrained
2.5 Tensile Membrane Action
2.6 Summary
References
3 Dynamic Increase Factor of Concrete Structures
3.1 Studies on DIF of Beam-Column Sub-structures
3.1.1 Specimen Design
3.1.2 Test Setup and Instrumentation
3.1.3 Material Properties
3.1.4 Quasi-static Test Results
3.1.5 Discussion of the Test Results
3.1.6 Dynamic Test Results
3.1.7 Discussion of Dynamic Test Results
3.1.8 Dynamic Load Increase Factor
3.2 Study on DIF of Beam-Column-Slab Sub-structures
3.2.1 Specimen Design
3.2.2 Material Properties
3.2.3 Test Setup and Instrumentation
3.2.4 Quasi-static Test Results
3.2.5 Dynamic Test Results
3.2.6 Single Degree of Freedom Model
3.3 Conclusions
References
4 Spatial and Slab Effects on Concrete Structures
4.1 Spatial Effects on Concrete Structures
4.1.1 Specimen Design
4.1.2 Test Setup and Instrumentation
4.1.3 Materials
4.1.4 Experimental Results
4.1.5 Load Redistribution Mechanisms
4.1.6 Spatial Effect
4.1.7 Dynamic Load Resistance
4.1.8 Analytical Study
4.2 Slab Effects on Concrete Structures
4.2.1 Specimen Design
4.2.2 Test Setup
4.2.3 Test Results
4.2.4 Slab Effects Discussion
4.2.5 Theoretical Analysis
4.3 Conclusions
References
5 Load Resisting Mechanisms of Flat Slab Structures to Resist Progressive Collapse
5.1 Progressive Collapse Resistance of RC Flat Slabs After the Loss of a Corner Column
5.1.1 Specimen Design
5.1.2 Test Setup and Instrumentation
5.1.3 Test Results
5.1.4 Discussion of the Test Results
5.2 Progressive Collapse Resistance of RC Flat Slabs After the Loss of a Middle Column
5.2.1 Design of Test Specimens
5.2.2 Design Variables in Test Specimens
5.2.3 Test Setup and Instrumentation
5.2.4 Experimental Results
5.2.5 Analysis and Discussion
5.3 Conclusions
References
6 Progressive Collapse Performance of Infilled Frames
6.1 Performance of Frames with Full-Height Infill Walls
6.1.1 Specimen Design
6.1.2 Material Properties
6.1.3 Test Setup
6.1.4 Test Results
6.1.5 Discussion of MI Effects
6.2 Analytical Study
6.2.1 YL and CAA of Bare Frames
6.2.2 FPL of Infilled Specimens
6.2.3 Dynamic Capacity Curves of Tested Specimens
6.3 Performance of Frames with Punctured Infill Walls
6.3.1 Design of Test Specimens
6.3.2 Test Setup and Instrumentation
6.3.3 Material Properties
6.3.4 Experimental Results
6.3.5 Results Analysis and Discussion
6.3.6 De-composition of the Load Resistance
6.4 Conclusions
References
7 Vulnerability and Robustness of RC Frames to Resist Progressive Collapse
7.1 Numerical Study on Progressive Collapse Behavior of RC Frames
7.1.1 Characteristics of the Case Study Buildings
7.1.2 Validation of Numerical Model
7.2 Study on Vulnerability of RC Frames to Resist Progressive Collapse Considering Uncertainties
7.2.1 Pushdown Analysis and Damage Criteria
7.2.2 Determination of Uncertainty Parameters
7.2.3 Correlation-Controlled Latin Hypercube Sampling Technique
7.2.4 Methodology and Procedure of Random Pushdown Analysis
7.2.5 Probabilistic Assessment Using Random Pushdown Analysis
7.2.6 Confidence Intervals of Progressive Collapse Fragility of RC Frame
7.2.7 Effects of Location of the Removed Column
7.2.8 Effect of Story Number on Vulnerability of Progressive Collapse
7.2.9 Empirical Fragility Curves
7.2.10 Sensitivity Analysis on Uncertainty Parameters
7.2.11 Conclusions
References