Plasma Etching Processes for Interconnect Realization in VLSI

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This is the first of two books presenting the challenges and future prospects of plasma etching processes for microelectronics, reviewing the past, present and future issues of etching processes in order to improve the understanding of these issues through innovative solutions.

This book focuses on back end of line (BEOL) for high performance device realization and presents an overview of all etch challenges for interconnect realization as well as the current etch solutions proposed in the semiconductor industry. The choice of copper/low-k interconnect architecture is one of the keys for integrated circuit performance, process manufacturability and scalability.

Today, implementation of porous low-k material is mandatory in order to minimize signal propagation delay in interconnections. In this context, the traditional plasma process issues (plasma-induced damage, dimension and profile control, selectivity) and new emerging challenges (residue formation, dielectric wiggling) are critical points of research in order to control the reliability and reduce defects in interconnects. These issues and potential solutions are illustrated by the authors through different process architectures available in the semiconductor industry (metallic or organic hard mask strategies).
  • Presents the difficulties encountered for interconnect realization in very large-scale integrated (VLSI) circuits
  • Focused on plasma-dielectric surface interaction
  • Helps you further reduce the dielectric constant for the future technological nodes

Author(s): Nicolas Posseme
Edition: 1
Publisher: Elsevier
Year: 2015

Language: English
Pages: 128
Tags: Приборостроение;Полупроводниковые приборы;Интегральные схемы;