Physics and Technology for Engineers: Understanding Materials and Sustainability

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This textbook covers the physics of engineering materials and the latest technologies used in modern engineering projects. It has been designed for use as a reference book and course material for undergraduate engineering students. The book was born out of the need for a comprehensive, balanced, and up-to-date guide for teaching physics to beginning undergraduate engineering students and creating examination papers for technical boards and institutes. The text is divided into ten chapters, each with its specific objectives and features. The topics covered include the classification of engineering materials, atomic structure, electrical and magnetic behavior of solids, quantum mechanics, laser technology, nanomaterials, and sustainable development.

Authored by a physicist with over 40 years of teaching experience, this richly-illustrated textbook features an abundance of self-assessment questions, solved examples, and a variety of chapter-end questions with detailed answers. The textbook starts from the very basics and is developed to the desired level, thus making it ideal as standalone course material.


Author(s): R. Prasad
Publisher: Springer
Year: 2023

Language: English
Pages: 545
City: Cham

Preface
Acknowledgements
Contents
1 Engineering Materials, Atomic Structure and Bounding
1.1 Classification of Condensed Matter
1.1.1 Metals
1.1.2 Ceramics
1.1.3 Polymers
1.1.4 Composites
1.2 Atomic Structure
1.2.1 Elements of Atomic Structure
1.2.2 Arrangement of Electrons in Atom
1.2.3 Shape and Orientation of Orbitals
1.2.4 Electron Energy Level Diagram
1.2.5 Electron Configuration of Elements
1.2.6 Aufbau or Building-Up Principle
1.2.7 Representing Electron Configuration
1.2.8 Valence Shell
1.2.9 Some Anomalous Electron Configurations
1.3 Bonds Between Atoms and Ions
1.3.1 Electronegativity
1.3.2 The Octet Rule
1.3.3 Classification of Bonding
2 Electrical Behaviour of Condensed Matter
2.1 Introduction
2.2 Electron Energy Band Theory
2.3 Insulators
2.4 Semiconductors
2.4.1 Intrinsic Semiconductors
2.4.2 Covalent Band Picture of Intrinsic Semiconductor
2.4.3 Doped or Extrinsic Semiconductors
2.4.4 Doping Technology
2.4.5 n and p Type Semiconductors
2.4.6 Compensated Semiconductor
2.4.7 Degenerate and Non-degenerate Semiconductors
2.4.8 Direct and Indirect Semiconductor
2.4.9 Compound Semiconductors
2.4.10 Current Flow in Semiconductor
2.4.11 Temperature Dependence of Semiconductor Resistivity
2.4.12 Theoretical Calculation of Carrier Concentration in a Semiconductor
2.4.13 Hall Effect
2.4.14 p–n Junction
2.4.15 Some Formulations
2.5 Conductors
2.5.1 Semimetals and Half Metals
2.6 Superconductor
2.6.1 Background
2.6.2 BCS Theory of Superconductivity
3 Magnetic Materials
3.1 Introduction
3.2 Electric Current and Magnetic Field
3.3 Magnetic Dipole Moment
3.4 Magnetic Moment of a Charged Particle Moving in a Circular Orbit
3.4.1 Classical to Quantum Mechanics
3.5 Magnetic (Dipole) Moment of Electron
3.6 Magnetic Behaviour of Solids
3.6.1 Magnetic Induction B and Magnetic Field H
3.7 Classification of Magnetic Materials
3.7.1 Diamagnetic Materials
3.7.2 Paramagnetic Materials
3.7.3 Ferromagnetic Materials
3.7.4 Antiferromagnetic and Ferrimagnetic Materials
3.8 Permanent Magnetic Materials
4 X-rays, Dual Nature of Matter, Failure of Classical Physics and Success of Quantum Approach
4.1 Introduction
4.2 Discovery, Production and Properties of X-rays
4.2.1 Production of X-rays
4.2.2 Continuous X-rays
4.2.3 Characteristic X-rays
4.2.4 Mosley’s Law
4.2.5 X-ray Diffraction
4.2.6 Some Application of X-rays
4.3 Dual Nature of Matter
4.3.1 Davisson and Germer Experiment
4.4 Some Examples of the Failures of Classical Approach and Success of Quantum Approach
4.4.1 Stability of the Atom and the Nature of Atomic Spectra
4.4.2 Photoelectric Effect
4.4.3 Quantum Theory of Photoelectric Effect
4.4.4 Work Function
4.4.5 Residual Atom after the Emission of Photoelectron
4.5 Blackbody Radiations and Their Energy Distribution
4.5.1 Wien’s Displacement Law
4.5.2 Failure of Wien’s Distribution Law
4.5.3 Rayleigh and Jean’s Distribution Law
4.5.4 Failure of Rayleigh–Jeans Distribution
4.6 Quantum Theory of Blackbody Radiations
4.7 Compton Scattering of Gamma Rays
4.7.1 Compton Wavelength
4.7.2 Compton Scattering by the Whole Atom
4.7.3 Photon Interactions with Matter
4.7.4 Some Applications of Compton Scattering
4.8 Specific Heat of Solids
4.8.1 Dulong–Petit Law
4.8.2 Obtaining Dulong–Petit Law on the Basis of Classical Physics
4.8.3 Problems with Dulong–Petit Law
4.9 Quantum Approach to Atomic Specific Heat of Solids
4.9.1 Einstein’s Theory for Specific Heat of Solids
4.9.2 Investigating the Temperature Dependence of Einstein’s Equation
4.9.3 Drawbacks of Einstein’s Model
4.9.4 Debye Theory of Atomic Specific Heat
4.9.5 Debye Temperature θD
5 Introduction to Quantum Mechanics
5.1 Introduction
5.2 Postulates of Quantum Mechanics
5.2.1 What Does Wavefunction Represent?
5.2.2 Properties of the Acceptable Wavefunction
5.3 Observables and Operators
5.4 Time Evolution of a Quantum Mechanical System
5.4.1 Schrodinger Time-Dependent Equation
5.4.2 Some Properties of Schrodinger Equation
5.5 Time-Independent Schrodinger Equation
5.6 About Operators
5.6.1 Null Operator (O)
5.6.2 Unity or Identity Operator ()
5.6.3 Linear Operator
5.6.4 Hermitian Conjugate and Hermitian Operator
5.6.5 Anti-hermitian Operator
5.6.6 Inverse Operator ( - 1)
5.6.7 Unitary Operator ()
5.6.8 Some Properties of Hermitian Operators
5.6.9 Algebra of Operators
5.6.10 Operators for Some Dynamical Variables
5.7 Measurement of a Dynamical Variable in Quantum Mechanics
5.7.1 Expectation Value of a Dynamic Variable
5.8 Some One-Dimensional Problems
5.8.1 Energy States: Bound and Scattering States
5.8.2 Quantum Mechanical Description of a Free Particle
5.8.3 Particle in a One-Dimensional Asymmetric Infinite Potential Well
5.8.4 Potential Barrier and Tunnelling
5.9 Heisenberg Uncertainty Principle
5.10 Correspondence Principle and Ehrenfest’s Theorem
6 Quantum Statistics
6.1 Introduction
6.2 Application of Quantum Statistics (Statistical Mechanics) to an Assembly of Non-interacting Particles
6.3 Energy Levels, Energy States, Degeneracy and Occupation Number
6.3.1 Distinguishable and Indistinguishable Particles
6.3.2 Macrostate
6.3.3 Microstates
6.3.4 Time Evolution of an Assembly
6.3.5 Postulate of Equal a Prior Probability of All Microstates
6.4 Quantum Statistical Probability of a Macrostate
6.4.1 System Properties and Average Occupation Number
6.5 The Bose–Einstein Statistical Distribution
6.6 The Fermi–Dirac Statistical Distribution
6.7 The Maxwell–Boltzmann Statistical Distribution
6.8 Relation Between Entropy and Thermodynamic Probability
6.9 The Distribution Function
7 Optical Fiber Communication
7.1 Introduction
7.2 Advantages of Optical Fiber Communication
7.3 Basics of Optical Fiber Communication
7.3.1 Optical Fiber Materials
7.3.2 Frequently Used Wavelengths in Optical Transmission
7.3.3 Principle of Total Internal Reflection
7.3.4 Types of Fibers
7.3.5 Rays Guided Through Fiber
7.3.6 Meridional and Skewed Rays
7.3.7 Acceptance Angle
7.3.8 Numerical Aperture (NA)
7.3.9 The V Parameter
7.3.10 Attenuation and Dispersion of Optical Signal
7.4 Components of Optical Fiber Network Link
7.5 Applications of Optical Fiber Transmission
8 Laser Technology and Its Applications
8.1 Introduction
8.2 Electromagnetic Radiations
8.3 Interaction of Electromagnetic Radiation with Matter
8.4 Einstein Prediction of Stimulated Emission
8.5 Stimulated (or Induced) Emission of Photons
8.5.1 Population Inversion
8.5.2 Essential Requirements for Laser Action
8.5.3 Pumping
8.5.4 Three and Four Level Lasing Schemes
8.5.5 Optical Resonator or Laser Cavity
8.6 Special Characteristics of Laser Light
8.7 Classification of Laser Sources
8.7.1 Solid State Lasers
8.7.2 Dye (Liquid) Laser Source
8.7.3 Gas Laser Sources
8.7.4 Excimer Laser
8.7.5 Mode Locking
8.7.6 Q-Switching
8.8 Some Applications of Lasers
9 Nanomaterials
9.1 Introduction
9.2 Special Features of Nanomaterials
9.3 Technology Used for the Study of Nanostructures
9.4 Techniques of Producing Nanostructures
9.4.1 Bottom-Up Techniques
9.4.2 Top-Down Techniques of Fabricating Nanostructures
9.4.3 Carbon Nanotubes
10 Sustainability and Sustainable Energy Options
10.1 Introduction
10.2 Social Sustainability
10.3 Economical Sustainability
10.4 Environmental Sustainability
10.4.1 Atmosphere
10.4.2 Mechanism of Trapping Heat by Greenhouse Gases
10.4.3 Global Greenhouse Gas Emission by Human Activities
10.5 Global Warming
10.5.1 The Carbon Footprint
10.5.2 Reducing and Offsetting Carbon Footprints
10.6 Projections on Average Temperature Rise of 1.5 °C Above Pre-industrial Levels
10.7 United Nation’s Efforts
10.7.1 Outlook Scenarios: Computer Model-Based Scenarios Prepared by IEA
10.8 Sustainability of Land Mass
10.9 Sustainability of Water Bodies
10.9.1 Sustainability of River and Other Water Systems
10.10 Some Efforts for Improving the Sustainability of Environment
10.10.1 A Unique Fight Against Climate Change; the Ice Stupa or Artificial Glacier
10.11 Sustainable Energy
10.11.1 Units of Energy
10.11.2 Primary Energy
10.11.3 Global Energy Production, an Overview
10.11.4 Electricity: The Most Convenient Form of Energy
10.11.5 Cost of Electricity by Source: Cost Metrics
10.11.6 Energy Densities Associated with Prevalent Energy Sources
10.11.7 Problem with Present Energy Mix
10.12 Some Clean and Sustainable Sources
10.12.1 Hydrogen as an Alternative Source of Energy
10.13 Hydrogen Fuel Cell
10.14 Nuclear Energy
10.14.1 Drawbacks of Fission Reactor
10.14.2 Plus Points of Fission Reactor
10.14.3 Accelerator-Driven Energy Amplifier
10.15 Terrain Dependent Renewable Energy Sources
10.15.1 Geothermal Energy
10.15.2 Hydroelectric Energy
10.16 Wind Energy
10.17 Solar Energy
10.17.1 Solar Thermal
10.17.2 Solar Photovoltaic (PV) Technology
10.18 Energy from Ocean
10.18.1 Tidal Energy
10.18.2 Ocean Thermal Energy
10.19 Portable Sources of Sustainable Energy
10.19.1 Lithium-Ion Battery
10.19.2 Super Capacitor
Index