One Hundred Years of General Relativity: From Genesis and Empirical Foundations to Gravitational Waves, Cosmology and Quantum Gravity (The 2 Volumes)

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

LIGO Scientific and Virgo Collaborations announced in February 2016 and in June 2016 the first direct detections of gravitational waves (GWs) by LIGO Hanford and LIGO Livingston detectors in September 2015 and in December 2015. With the LIGO discovery announcements, two important things are verified: (i) GWs are directly detected in the solar-system; (ii) Black holes (BHs), binary BHs and BH coalescences are discovered and measured experimentally and directly with the distances reached more than 1 billion light years. These discoveries constitute the best celebration of the centennial of the genesis of general relativity. We refer the readers to Refs. 1 and 2 for the discovery and Refs. 3 and 4 for a brief history of gravitational wave research. The aim of this two-volume title is to give a comprehensive review of one hundred years of development of general relativity and its scientific influences. This unique title provides a broad introduction and review to the fascinating and profound subject of general relativity, its historical development, its important theoretical consequences, gravitational wave detection and applications to astrophysics and cosmology. The series focuses on five aspects of the theory:
  • Genesis, Solutions and Energy
  • Empirical Foundations
  • Gravitational Waves
  • Cosmology
  • Quantum Gravity
The first three topics are covered in Volume 1 and the remaining two are covered in Volume 2. While this is a two-volume title, it is designed so that each volume can be a standalone reference volume for the related topic.

Readership: Graduate students and researchers interested in general relativity. A web page will be set up for updates of the reviews of these two volumes. Please see http://astrod.wikispaces.com/ for announcement.

Author(s): Wei-Tou Ni
Publisher: World Scientific Publishing Co
Year: 2017

Language: English
Pages: 1356
Tags: Astrophysics & Space Science;Astronomy & Space Science;Science & Math;Cosmology;Astronomy & Space Science;Science & Math;Relativity;Physics;Science & Math;Astronomy & Astrophysics;Science & Mathematics;New, Used & Rental Textbooks;Specialty Boutique

Volume 1
Foreword v
Color plates I-CP1
Part I. Genesis, Solutions and Energy I-1
1. A genesis of special relativity I-3
Val´erie Messager and Christophe Letellier
IJMPD 24 (2015) 1530024
1. Introduction I-3
2. The Ether: From Celestial Body Motion to Light
Propagation I-5
2.1. Its origin I-5
2.2. The luminiferous ether I-8
3. Galileo’s Composition Law for Velocities I-11
4. Questioning the Nature of Light: Waves
or Corpuscles? I-15
5. From Electrodynamics to Light I-24
5.1. Amp`ere’s law I-24
5.2. Maxwell’s electromagnetic waves as light I-28
5.3. Helmholtz’s theory I-32
5.4. Hertzs experiments for validating Maxwell’s
theory I-33
6. Invariance of the Field Equations from a Frame
to Another One I-37
6.1. Hertz’s electrodynamic theory I-37
6.2. Voigt’s wave equation I-41
6.3. Lorentz’s electrodynamical theory I-42
6.4. Larmor’s theory I-50
7. Poincar´e’s Contribution I-51
8. Einstein’s 1905 Contribution I-72
9. Conclusion I-76
Appendices I-77
A. 1. Fizeau’s experiments I-77
xi
xii Contents
A. 2. Michelson and Morley’s experiments I-77
2. Genesis of general relativity — A concise exposition I-85
Wei-Tou Ni
IJMPD 25 (2016) 1630004
1. Prelude — Before 1905 I-86
2. The Period of Searching for Directions and New
Ingredients: 1905–1910 I-91
3. The Period of Various Trial Theories: 1911–1914 I-96
4. The Synthesis and Consolidation: 1915–1916 I-100
5. Epilogue I-103
3. Schwarzschild and Kerr solutions of Einstein’s field
equation: An Introduction I-109
Christian Heinicke and Friederich W. Hehl
IJMPD 24 (2015) 1530006
1. Prelude I-109
1.1. Newtonian gravity I-109
1.2. Minkowski space I-114
1.2.1. Null coordinates I-115
1.2.2. Penrose diagram I-115
1.3. Einstein’s field equation I-118
2. The Schwarzschild Metric (1916) I-120
2.1. Historical remarks I-120
2.2. Approaching the Schwarzschild metric I-122
2.3. Six classical representations of the
Schwarzschild metric I-126
2.4. The concept of a Schwarzschild black hole I-126
2.4.1. Event horizon I-128
2.4.2. Killing horizon I-130
2.4.3. Surface gravity I-131
2.4.4. Infinite redshift I-131
2.5. Using light rays as coordinate lines I-131
2.5.1. Eddington–Finkelstein coordinates I-132
2.5.2. Kruskal–Szekeres coordinates I-133
2.6. Penrose–Kruskal diagram I-135
2.7. Adding electric charge and the cosmological
constant: Reissner–Nordstr¨om I-136
2.8. The interior Schwarzschild solution and the
TOV equation I-137
Contents xiii
3. The Kerr Metric (1963) I-141
3.1. Historical remarks I-141
3.2. Approaching the Kerr metric I-144
3.2.1. Papapetrou line element and vacuum
field equation I-144
3.2.2. Ernst equation (1968) I-147
3.2.3. From Ernst back to Kerr I-148
3.3. Three classical representations of the
Kerr metric I-149
3.4. The concept of a Kerr black hole I-151
3.4.1. Depicting Kerr geometry I-152
3.5. The ergoregion I-155
3.5.1. Constrained rotation I-155
3.5.2. Rotation of the event horizon I-156
3.5.2. Penrose process and black hole
thermodynamics I-156
3.6. Beyond the horizons I-157
3.6.1. Using light rays as coordinate lines I-158
3.7. Penrose–Carter diagram and Cauchy horizon I-160
3.8. Gravitoelectromagnetism, multipole moments I-161
3.8.1. Gravitoelectromagnetic field strength I-163
3.8.2. Quadratic invariants I-165
3.8.3. Gravitomagnetic clock effect of
Mashhoon, Cohen et al. I-166
3.8.4. Multipole moments: Gravitoelectric
and gravitomagnetic ones I-167
3.9. Adding electric charge and the cosmological
constant: Kerr–Newman metric I-168
3.10. On the uniqueness of the Kerr black hole I-170
3.11. On interior solutions with material sources I-171
4. Kerr Beyond Einstein I-172
4.1. Kerr metric accompanied by a propagating
linear connection I-172
4.2. Kerr metric in higher dimensions and
in string theory I-174
Appendix I-175
A.1. Exterior calculus and computer algebra I-175
xiv Contents
4. Gravitational energy for GR and Poincar´e
gauge theories: A covariant Hamiltonian approach I-187
Chiang-Mei Chen, James Nester and Roh-Suan Tung
IJMPD 24 (2015) 1530026
1. Introduction I-188
2. Background I-189
2.1. Some brief early history I-189
2.2. From Einstein’s correspondence I-190
2.3. Noether’s contribution I-192
2.4. Noether’s result I-193
3. The Noether Energy–Momentum Current
Ambiguity I-194
4. Pseudotensors I-196
4.1. Einstein, Klein and superpotentials I-197
4.2. Other GR pseudotensors I-198
4.3. Pseudotensors and the Hamiltonian I-200
5. The Quasi-Local View I-201
6. Currents as Generators I-201
7. Gauge and Geometry I-202
8. Dynamical Spacetime Geometry and the
Hamiltonian I-203
8.1. Pseudotensors and the Hamiltonian I-204
8.2. Some comments I-204
9. Differential Forms I-204
10. Variational Principle for Form Fields I-206
10.1. Hamiltons principle I-207
10.2. Compact representation I-207
11. Some Simple Examples of the Noether Theorems I-208
11.1. Noether’s first theorem: Energy–momentum I-208
11.2. Noether’s second theorem: Gauge fields I-209
11.3. Field equations with local gauge theory I-211
12. First-Order Formulation I-213
13. The Hamiltonian and the 3 + 1 Spacetime Split I-214
13.1. Canonical Hamiltonian formalism I-215
13.2. The differential form of the spacetime
decomposition I-215
13.3. Spacetime decomposition of the variational
formalism I-217
Contents xv
14. The Hamiltonian and Its Boundary Term I-218
14.1. The translational Noether current I-219
14.2. The Hamiltonian formulation I-220
14.3. Boundary terms: The boundary condition
and reference I-221
14.4. Covariant-symplectic Hamiltonian
boundary terms I-222
15. Standard Asymptotics I-223
15.1. Spatial infinity I-224
15.2. Null infinity I-224
15.3. Energy flux I-225
16. Application to Electromagnetism I-225
17. Geometry: Covariant Differential Formulation I-227
17.1. Metric and connection I-228
17.2. Riemann–Cartan geometry I-229
17.3. Regarding geometry and gauge I-230
17.4. On the affine connection and gauge theory I-230
18. Variational Principles for Dynamic Spacetime
Geometry I-232
18.1. The Lagrangian and its variation I-232
18.2. Local gauge symmetries, Noether currents
and differential identities I-233
18.3. Interpretation of the differential identities I-238
19. First-Order Form and the Hamiltonian I-240
19.1. First-order Lagrangian and local gauge
symmetries I-240
19.2. Generalized Hamiltonian and differential
identities I-241
19.3. General geometric Hamiltonian boundary
terms I-244
19.4. Quasi-local boundary terms I-245
19.5. A preferred choice I-245
19.6. Einstein’s GR I-246
19.7. Preferred boundary term for GR I-247
20. A “Best Matched” Reference I-248
20.1. The choice of reference I-249
20.2. Isometric matching of the 2-surface I-250
20.3. Complete 4D isometric matching I-251
xvi Contents
20.4. Complete 4D isometric matching I-251
21. Concluding Discussion I-252
Part II. Empirical Foundations I-263
5. Equivalence principles, spacetime structure
and the cosmic connection I-265
Wei-Tou Ni
IJMPD 25 (2016) 1630002
1. Introduction I-265
2. Meaning of Various Equivalence Principles I-270
2.1. Ancient concepts of inequivalence I-271
2.2. Macroscopic equivalence principles I-271
2.3. Equivalence principles for photons
(wave packets of light) I-273
2.4. Microscopic equivalence principles I-273
2.5. Equivalence principles including gravity
(Strong equivalence principles) I-276
2.6. Inequivalence and interrelations of various
equivalence principles I-277
3. Gravitational Coupling to Electromagnetism and
the Structure of Spacetime I-278
3.1. Premetric electrodynamics as a framework
to study gravitational coupling
to electromagnetism I-278
3.2. Wave propagation and the dispersion relation I-279
3.2.1. The condition of vanishing of
B(1) and B(2) for all directions of
wave propagation I-282
3.2.2. The condition of
(Sk)B(1) =(P)B(1) =0 and A(1) = A(2)
for all directions of wave propagation I-284
3.3. Nonbirefringence condition for the
skewonless case I-284
3.4. Wave propagation and the dispersion
relation in dilaton field and axion field I-288
3.5. No amplification/no attenuation and
no polarization rotation constraints
on cosmic dilaton field and cosmic axion field I-292
3.6. Spacetime constitutive relation including
skewons I-293
Contents xvii
3.7. Constitutive tensor from asymmetric metric
and Fresnel equation I-297
3.8. Empirical foundation of the closure relation
for skewonless case I-300
4. From Galileo Equivalence Principle to Einstein
Equivalence Principle I-303
5. EEP and Universal Metrology I-305
6. Gyrogravitational Ratio I-307
7. An Update of Search for Long Range/Intermediate
Range Spin–Spin, Spin–Monopole and
Spin–Cosmos Interactions I-308
8. Prospects I-309
6. Cosmic polarization rotation: An astrophysical test
of fundamental physics I-317
Sperello di Serego Alighieri
IJMPD 24 (2015) 1530016
1. Introduction I-317
2. Impact of CPR on Fundamental Physics I-318
3. Constraints from the Radio Polarization of RGs I-319
4. Constraints from the UV Polarization of RGs I-320
5. Constraints from the Polarization of the
CMB Radiation I-321
6. Other Constraints I-325
7. Discussion I-326
8. Outlook I-327
7. Clock comparison based on laser ranging technologies I-331
´Etienne Samain
IJMPD 24 (2015) 1530021
1. Introduction I-331
2. Scientific Objectives I-335
2.1. Time and frequency metrology I-335
2.2. Fundamental physics I-338
2.3. Solar System science I-340
2.4. Solar System navigation based on clock
comparison I-341
3. Time Transfer by Laser Link: T2L2 on Jason-2 I-341
3.1. Principle I-341
3.2. Laser station ground segment I-342
xviii Contents
3.3. Space instrument I-344
3.4. Time equation I-347
3.5. Error budget I-349
3.6. Link budget I-351
3.7. Exploitation I-352
4. One-Way Lunar Laser Link on LRO Spacecraft I-357
5. Prospective I-361
6. Conclusion and Outlook I-364
8. Solar-system tests of relativistic gravity I-371
Wei-Tou Ni
IJMPD 25 (2016) 1630003
1. Introduction and Summary I-371
2. Post-Newtonian Approximation, PPN Framework,
Shapiro Time Delay and Light Deflection I-374
2.1. Post-Newtonian approximation I-375
2.2. PPN framework I-377
2.3. Shapiro time delay I-380
2.4. Light deflection I-381
3. Solar System Ephemerides I-382
4. Solar System Tests I-385
5. Outlook — On Going and Next-Generation Tests I-393
9. Pulsars and gravity I-407
R. N. Manchester
IJMPD 24 (2015) 1530018
1. Introduction I-407
1.1. Pulsar timing I-410
2. Tests of Relativistic Gravity I-412
2.1. Tests of general relativity with
double-neutron-star systems I-412
2.1.1. The Hulse–Taylor binary, PSR
B1913+16 I-412
2.1.2. PSR B1534+12 I-415
2.1.3. The double pulsar, PSR
J0737−3039A/B I-417
2.1.4. Measured post-Keplerian parameters I-421
2.2. Tests of equivalence principles and
alternative theories of gravitation I-421
2.2.1. Limits on PPN parameters I-423
Contents xix
2.2.2. Dipolar gravitational waves and the
constancy of G I-427
2.2.3. General scalar–tensor and
scalar–vector–tensor theories I-429
2.3. Future prospects I-431
3. The Quest for Gravitational-Wave Detection I-432
3.1. Pulsar timing arrays I-432
3.2. Nanohertz gravitational-wave sources I-435
3.2.1. Massive black-hole binary systems I-435
3.2.2. Cosmic strings and the early universe I-439
3.2.3. Transient or burst GW sources I-440
3.3. Pulsar timing arrays and current results I-443
3.3.1. Existing PTAs I-444
3.3.2. Limits on the nanohertz GW
background I-445
3.3.3. Limits on GW emission from
individual black-hole binary systems I-446
3.4. Future prospects I-450
4. Summary and Conclusion I-452
Part III. Gravitational Waves I-459
10. Gravitational waves: Classification, methods
of detection, sensitivities, and sources I-461
Kazuaki Kuroda, Wei-Tou Ni and Wei-Ping Pan
IJMPD 24 (2015) 1530031
1. Introduction and Classification I-461
2. GWs in GR I-464
3. Methods of GW Detection, and Their Sensitivities I-470
3.1. Sensitivities I-471
3.2. Very high frequency band
(100kHz–1THz) and ultrahigh
frequency band (above 1THz) I-477
3.3. High frequency band (10Hz–100kHz) I-478
3.4. Doppler tracking of spacecraft (1 μHz–1mHz
in the low-frequency band) I-480
3.5. Space interferometers (low-frequency band,
100 nHz–100mHz; middle-frequency band,
100mHz–10Hz) I-481
3.6. Very-low-frequency band (300 pHz–100 nHz) I-486
3.7. Ultra-low-frequency band (10 fHz–300 pHz) I-488
xx Contents
3.8. Extremely-low (Hubble)-frequency band
(1 aHz–10 fHz) I-489
4. Sources of GWs I-491
4.1. GWs from compact binaries I-491
4.2. GWs from supernovae I-492
4.3. GWs from massive black holes and their
coevolution with galaxies I-493
4.4. GWs from extreme mass ratio inspirals (EMRIs) I-495
4.5. Primordial/inflationary/relic GWs I-495
4.6. Very-high-frequency and ultra-high-frequency
GW sources I-496
4.7. Other possible sources I-496
5. Discussion and Outlook I-497
11. Ground-based gravitational-wave detectors I-505
Kazuaki Kuroda
IJMPD 24 (2015) 1530032
1. Introduction to Ground-Based Gravitational-Wave
Detectors I-505
1.1. Gravitational-wave sources I-506
1.1.1. Achieved sensitivities of large projects I-506
1.1.2. Coalescences of binary neutron stars I-508
1.1.3. Coalescences of binary black holes I-508
1.1.4. Supernova explosion I-509
1.1.5. Quasi-normal mode oscillation at the
birth of black hole I-509
1.1.6. Unstable fast rotating neutron star I-510
1.2. Acceleration due to a gravitational wave I-510
1.3. Response of a resonant antenna I-512
1.4. Response of a resonant antenna I-515
1.4.1. Directivity I-516
1.4.1. Positioning I-518
1.5. Comparison of a resonant antenna and
an interferometer I-519
2. Resonant Antennae I-519
2.1. Development of resonant antennae I-520
2.2. Dynamical model of a resonant antenna with
two modes I-523
2.3. Signal-to-noise ratio and noise temperature I-525
Contents xxi
2.4. Comparison of five resonant antennae I-526
3. Interferometers I-527
3.1. First stage against technical noises
in prototype interferometers I-528
3.1.1. 3m-Garching interferometer I-528
3.1.2. 30m-Garching interferometer I-530
3.1.3. Glasgow 10m-Fabry–Perot Michelson
interferometer I-533
3.1.4. Caltech 40m-Fabry–Perot Michelson
interferometer I-535
3.1.5. ISAS 10m and 100m delay-line
interferometer I-536
3.2. Further R&D efforts in the first-generation
detectors I-536
3.2.1. Power recycling I-537
3.2.2. Signal recycling and resonant
side-band extraction I-538
3.3. Fighting with thermal noise of the second stage I-539
3.3.1. Mirror and suspension thermal noise I-540
3.3.2. Thermal noise of optical coating I-542
3.4. Fighting against quantum noises and squeezing I-543
3.4.1. Radiation pressure noise I-543
3.4.2. Squeezing I-544
4. Large Scale Projects I-546
4.1. LIGO project I-546
4.2. Virgo project I-548
4.3. GEO project I-552
4.4. TAMA/CLIO/LCGT(KAGRA) project I-555
4.4.1. TAMA I-555
4.4.2. CLIO I-558
4.4.3. LCGT (KAGRA) I-561
4.4.4. Einstein telescope I-565
5. Summary I-566
Appendix A. Thermal Noise I-567
A.1. Nyquist theorem I-567
A.2. Thermal noise of a harmonic oscillator I-568
Appendix B. Modulation I-569
Appendix C. Fabry–Perot Interferometer I-571
xxii Contents
C.1. Fabry–Perot cavity I-571
C.2. Frequency response of a Fabry–Perot Michelson
interferometer I-572
Appendix D. Newtonian Noise I-573
12. Gravitational wave detection in space I-579
Wei-Tou Ni
IJMPD 25 (2016) 1630001
1. Introduction I-579
2. Gravity and Orbit Observations/Experiments
in the Solar System I-586
3. Doppler Tracking of Spacecraft I-589
4. Interferometric Space Missions I-591
5. Frequency Sensitivity Spectrum I-596
6. Scientific Goals I-601
6.1. Massive black holes and their co-evolution
with galaxies I-601
6.2. Extreme mass ratio inspirals I-603
6.3. Testing relativistic gravity I-603
6.4. Dark energy and cosmology I-603
6.5. Compact binaries I-604
6.6. Relic GWs I-604
7. Basic Orbit Configuration, Angular Resolution
and Multi-Formation Configurations I-605
7.1. Basic LISA-like orbit configuration I-605
7.2. Basic ASTROD orbit configuration I-607
7.3. Angular resolution I-611
7.4. Six/twelve spacecraft formation I-612
8. Orbit Design and Orbit Optimization Using
Ephemerides I-612
8.1. CGC ephemeris I-613
8.2. Numerical orbit design and orbit
optimization for eLISA/NGO I-614
8.3. Orbit optimization for ASTROD-GW I-616
8.3.1. CGC 2.7.1 ephemeris I-616
8.3.2. Initial choice of spacecraft initial
conditions I-616
8.3.3. Method of optimization I-617
9. Deployment of Formation in Earthlike Solar Orbit I-619
10. Time Delay Interferometry I-619
Contents xxiii
11. Payload Concept I-622
12. Outlook I-624
Subject Index I
Author Index XIII
Volume 2
Foreword v
Color plates II-CP1
Part IV. Cosmology II-1
13. General Relativity and Cosmology II-3
Martin Bucher and Wei-Tou Ni
IJMPD 24 (2015) 1530030
14. Cosmic Structure II-19
Marc Davis
IJMPD 23 (2014) 1430021
1. History of Cosmic Discovery II-19
2. Measurement of the Galaxy Correlation Function II-22
2.1. Before 1980 II-22
2.2. After 1980 II-23
2.3. Remarkable large-scale structure in simulations II-25
2.4. Measurement of the BAO effect II-26
2.5. Further measurements of the power spectrum II-28
2.6. Lyman-α clouds II-29
3. Large Scale Flows II-31
4. Dwarf Galaxies as a Probe of Dark Matter II-34
5. Gravitational Lensing II-38
5.1. Double images II-38
5.2. Bullet cluster II-38
5.3. Substructure of gravitational lenses II-38
6. Conclusion II-40
15. Physics of the cosmic microwave background anisotropy II-43
Martin Bucher
IJMPD 24 (2015) 1530004
1. Observing the Microwave Sky: A Short History
and Observational Overview II-43
2. Brief Thermal History of the Universe II-54
xxiv Contents
3. Cosmological Perturbation Theory: Describing
a Nearly Perfect Universe Using General Relativity II-58
4. Characterizing the Primordial Power Spectrum II-61
5. Recombination, Blackbody Spectrum, and
Spectral Distortions II-62
6. Sachs–Wolfe Formula and More Exact Anisotropy
Calculations II-63
7. What CanWe Learn From the CMB Temperature
and Polarization Anisotropies? II-69
7.1. Character of primordial perturbations:
Adiabatic growing mode versus field ordering II-69
7.2. Boltzmann hierarchy evolution II-71
7.3. Angular diameter distance II-76
7.4. Integrated Sachs–Wolfe effect II-77
7.5. Reionization II-78
7.6. What we have not mentioned II-83
8. Gravitational Lensing of the CMB II-84
9. CMB Statistics II-86
9.1. Gaussianity, non-Gaussianity, and all that II-86
9.2. Non-Gaussian alternatives II-92
10. Bispectral Non-Gaussianity II-92
11. B Modes: A New Probe of Inflation II-94
11.1. Suborbital searches for primordial B modes II-95
11.2. Space based searches for primordial B modes II-96
12. CMB Anomalies II-96
13. Sunyaev–Zeldovich Effects II-98
14. Experimental Aspects of CMB Observations II-100
14.1. Intrinsic photon counting noise: Ideal
detector behavior II-102
14.2. CMB detector technology II-104
14.3. Special techniques for polarization II-106
15. CMB Statistics Revisited: Dealing with Realistic
Observations II-110
16. Galactic Synchrotron Emission II-112
17. Free–Free Emission II-113
18. Thermal Dust Emission II-114
19. Dust Polarization and Grain Alignment II-116
19.1. Why do dust grains spin? II-117
Contents xxv
19.2. About which axis do dust grains spin? II-118
19.3. A stochastic differential equation for L(t) II-118
19.4. Suprathermal rotation II-119
19.5. Dust grain dynamics and the galactic
magnetic field II-120
19.5.1. Origin of a magnetic moment along L II-121
19.6. Magnetic precession II-122
19.6.1. Barnett dissipation II-122
19.7. Davis–Greenstein magnetic dissipation II-124
19.8. Alignment along B without
Davis–Greenstein dissipation II-125
19.9. Radiative torques II-126
19.10. Small dust grains and anomalous
microwave emission (AME) II-128
20. Compact Sources II-130
20.1. Radio galaxies II-131
20.2. Infrared galaxies II-132
21. Other Effects II-132
21.1. Patchy reionization II-132
21.2. Molecular lines II-132
21.3. Zodiacal emission II-133
22. Extracting the Primordial CMB Anisotropies II-133
23. Concluding Remarks II-134
16. SNe Ia as a cosmological probe II-151
Xiangcun Meng, Yan Gao and Zhanwen Han
IJMPD 24 (2015) 1530029
1. Introduction II-151
2. SNe Ia as a Standardizable Distance Candle II-152
3. Progenitors of SNe Ia II-157
4. Effect of SN Ia Populations on Their Brightness II-160
5. SN Ia’s Role in Cosmology II-163
6. Issues and Prospects II-167
17. Gravitational Lensing in Cosmology II-173
Toshifumi Futamase
IJMPD 24 (2015) 1530011
1. Introduction and History II-173
2. Basic Properties for Lens Equation II-176
2.1. Derivation of the cosmological lens equation II-176
xxvi Contents
2.2. Properties of lens mapping II-179
2.3. Caustic and critical curves II-183
2.3.1. Circular lenses II-184
2.3.2. The Einstein radius and radial arcs II-187
2.3.3. Non-circular lenses II-189
3. Strong Lensing II-190
3.1. Methods of solving the lens equation:
LTM and non-LTM II-190
3.2. Image magnification II-191
3.3. Time delays II-191
3.4. Comparison of lens model software II-194
3.4.1. Non-light traces mass software II-194
3.4.2. Light traces mass software II-194
3.5. Lens statistics II-195
4. Weak Lensing II-196
4.1. Basic method II-197
4.1.1. Shape measurements II-199
4.2. E/B decomposition II-203
4.3. Magnification bias II-206
4.3.1. Simulation test II-206
4.3.2. Higher-order weak lensing-flexion
and HOLICs II-207
4.4. Cluster mass reconstruction II-208
4.4.1. Density profile II-211
4.4.2. Dark matter subhalos in the coma
cluster II-212
4.5. Cosmic shear II-214
4.5.1. How to measure the cosmic density field II-217
5. Conclusion and Future II-219
18. Inflationary cosmology: First 30+ years II-225
Katsuhiko Sato and Jun’ichi Yokoyama
IJMPD 24 (2015) 1530025
1. Introduction II-225
1.1. Developments in Japan II-227
1.2. Developments in Russia II-228
1.3. Inflation paradigm II-230
2. Resolution of Fundamental Problems II-231
3. Realization of Inflation II-233
Contents xxvii
3.1. Three mechanisms II-233
3.2. Inflation scenario II-234
4. Slow-Roll Inflation Models II-236
4.1. Large-field models II-236
4.2. Small-field model II-237
4.3. Hybrid inflation II-238
5. Reheating II-239
6. Generation of Quantum Fluctuations that
Eventually Behave Classically II-242
7. Cosmological Perturbation II-244
8. Generation of Curvature Fluctuations in
Inflationary Cosmology II-246
9. Tensor Perturbation II-249
10. The Most General Single-Field Inflation II-250
10.1. Homogeneous background equations II-251
10.2. Kinetically driven G-inflation II-253
10.3. Potential-driven slow-roll G-inflation II-254
11. Power Spectrum of Perturbations in Generalized
G-inflation II-255
11.1. Tensor perturbations II-255
11.2. Scalar perturbations II-258
12. Inflationary Cosmology and Observations II-261
12.1. Large-field models II-264
12.2. Small-field model II-265
12.3. Hybrid inflation model II-266
12.4. Noncanonical models and multi-field models II-266
13. Conclusion II-267
19. Inflation, string theory and cosmic strings II-273
David F. Chernoff and S.-H. Henry Tye
IJMPD 24 (2015) 1530010
1. Introduction II-273
2. The Inflationary Universe II-277
3. String Theory and Inflation II-280
3.1. String theory and flux compactification II-281
3.2. Inflation in string theory II-282
4. Small r Scenarios II-283
4.1. Brane inflation II-284
4.1.1. D3-¯D3-brane inflation II-285
xxviii Contents
4.1.2. Inflection point inflation II-286
4.1.3. DBI model II-286
4.1.4. D3-D7-brane inflation II-287
4.2. K¨ahler moduli inflation II-287
5. Large r Scenarios II-288
5.1. The Kim–Nilles–Peloso mechanism II-288
5.1.1. Natural inflation II-288
5.1.2. N-flation II-288
5.1.3. Helical inflation II-290
5.2. Axion monodromy II-291
5.3. Discussions II-292
6. Relics: Low Tension Cosmic Strings II-293
6.1. Strings in brane world cosmology II-296
6.2. Current bounds on string tension Gμ and
probability of intercommutation p II-297
7. Scaling, Slowing, Clustering and Evaporating II-299
7.1. Large-scale string distribution II-302
7.2. Local string distribution II-305
8. Detection II-307
8.1. Detection via Microlensing II-307
8.2. WFIRST microlensing rates II-307
8.3. Gravitational waves II-311
9. Summary II-314
Part V. Quantum Gravity II-323
20. Quantum gravity: A brief history of ideas
and some outlooks II-325
Steven Carlip, Dah-Wei Chiou, Wei-Tou Ni
and Richard Woodard
IJMPD 24 (2015) 1530028
1. Prelude II-325
2. Perturbative Quantum Gravity II-327
3. String Theory II-328
4. Loop Quantum Gravity II-332
5. Black Hole Thermodynamics II-334
6. Quantum Gravity Phenomenology II-337
21. Perturbative quantum gravity comes of age II-349
R. P. Woodard
IJMPD 23 (2014) 1430020
Contents xxix
1. Introduction II-349
2. Why Quantum Gravitational Effects from
Primordial Inflation are Observable II-351
2.1. The background geometry II-351
2.2. Inflationary particle production II-355
3. Tree Order Power Spectra II-358
3.1. The background for single-scalar inflation II-359
3.2. Gauge-fixed, constrained action II-360
3.3. Tree order power spectra II-363
3.4. The controversy over adiabatic regularization II-369
3.5. Why these are quantum gravitational effects II-369
4. Loop Corrections to the Power Spectra II-371
4.1. How to make computations II-372
4.2. -Suppression and late-time growth II-376
4.3. Nonlinear extensions II-380
4.4. The promise of 21 cm radiation II-382
5. Other Quantum Gravitational Effects II-384
5.1. Linearized effective field equations II-384
5.2. Propagators and tensor 1PI functions II-386
5.3. Results and open problems II-395
5.4. Back-Reaction II-399
6. Conclusions II-402
22. Black hole thermodynamics II-415
S. Carlip
IJMPD 23 (2014) 1430023
1. Introduction II-415
2. Prehistory: Black Hole Mechanics and Wheeler’s
Cup of Tea II-416
3. Hawking Radiation II-418
3.1. Quantum field theory in curved spacetime II-419
3.2. Hawking’s calculation II-420
4. Back-of-the-Envelope Estimates II-422
4.1. Entropy II-422
4.2. Temperature II-423
5. The Many Derivations of Black Hole
Thermodynamics II-424
5.1. Other settings II-425
5.2. Unruh radiation II-425
xxx Contents
5.3. Particle detectors II-426
5.4. Tunneling II-426
5.5. Hawking radiation from anomalies II-427
5.6. Periodic Greens functions II-428
5.7. Periodic Gravitational partition function II-429
5.8. Periodic Pair production of black holes II-431
5.9. Periodic Quantum field theory and the
eternal black hole II-431
5.10. Periodic Quantized gravity and classical
matter II-432
5.11. Periodic Other approaches II-433
6. Thermodynamic Properties of Black Holes II-433
6.1. Periodic Black hole evaporation II-434
6.2. Periodic Heat capacity II-434
6.3. Periodic Phase transitions II-435
6.4. Periodic Thermodynamic volume II-435
6.5. Periodic Lorentz violation and perpetual
motion machines II-436
7. Approaches to Black Hole Statistical Mechanics II-437
7.1. Periodic “Phenomenology” II-437
7.2. Periodic Entanglement entropy II-438
7.3. Periodic String theory II-440
7.3.1. Weakly coupled strings and branes II-440
7.3.2. Fuzzballs II-441
7.3.3. The AdS/CFT correspondence II-441
7.4. Loop quantum gravity II-442
7.4.1. Microcanonical approach II-442
7.4.2. Microcanonical approach II-444
7.5. Other ensembles II-445
7.6. Induced gravity II-445
7.7. Logarithmic corrections II-446
8. The Holographic Conjecture II-446
9. The Problem of Universality II-448
9.1. State-counting in conformal field theory II-449
9.2. Application to black holes II-450
9.3. Effective descriptions II-451
10. The Information Loss Problem II-451
10.1. Nonunitary evolution II-452
Contents xxxi
10.2. No black holes II-452
10.3. Remnants and baby universes II-453
10.4. Hawking radiation as a pure state II-454
11. Conclusion II-455
Appendix A. Classical Black Holes II-456
23. Loop quantum gravity II-467
Dah-Wei Chiou
IJMPD 24 (2015) 1530005
1. Introduction II-467
2. Motivations II-469
2.1. Why quantum gravity? II-469
2.2. Difficulties of quantum gravity II-470
2.3. Background-independent approach II-470
3. Connection Theories of General Relativity II-471
3.1. Connection dynamics II-471
3.2. Canonical (Hamiltonian) formulation II-473
3.3. Remarks on connection theories II-476
4. Quantum Kinematics II-478
4.1. Quantization scheme II-478
4.2. Cylindrical functions II-479
4.3. Spin networks II-481
4.4. S-knots II-483
5. Operators and Quantum Geometry II-486
5.1. Holonomy operator II-486
5.2. Area operator II-487
5.3. Volume operator II-489
5.4. Quantum geometry II-490
6. Scalar Constraint and Quantum Dynamics II-492
6.1. Regulated classical scalar constraint II-492
6.2. Quantum scalar constraint II-495
6.3. Solutions to the scalar constraint II-498
6.4. Quantum dynamics II-500
7. Inclusion of Matter Fields II-503
7.1. Yang–Mills fields II-503
7.2. Fermions II-504
7.3. Scalar fields II-505
7.4. S-knots of geometry and matter II-506
xxxii Contents
8. Low-Energy Physics II-507
8.1. Weave states II-507
8.2. Loop states versus Fock states II-508
8.3. Holomorphic coherent states II-508
9. Spin Foam Theory II-511
9.1. From s-knots to spin foams II-511
9.2. Spin foam formalism II-514
10. Black Hole Thermodynamics II-515
10.1. Statistical ensemble II-516
10.2. Bekenstein–Hawking entropy II-517
10.3. More on black hole entropy II-519
11. Loop Quantum Cosmology II-520
11.1. Symmetry reduction II-520
11.2. Quantum kinematics II-522
11.3. Quantum constraint operator II-524
11.4. Physical Hilbert space II-526
11.5. Quantum dynamics II-527
11.6. Other models II-528
12. Current Directions and Open Issues II-529
12.1. The master constraint program II-529
12.2. Algebraic quantum gravity II-530
12.3. Reduced phase space quantization II-530
12.4. Off-shell closure of quantum constraints II-532
12.5. Loop quantum gravity versus spin foam theory II-533
12.6. Covariant loop quantum gravity II-533
12.7. Spin foam cosmology II-534
12.8. Quantum reduced loop gravity II-534
12.9. Cosmological perturbations in the Planck era II-534
12.10. Spherically symmetric loop gravity II-535
12.11. Planck stars and black hole fireworks II-535
12.12. Information loss problem II-536
12.13. Quantum gravity phenomenology II-537
12.14. Supersymmetry and other dimensions II-537
Subject Index I
Author Index XIII