Nuclear Fuel Cycle

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

The present book describes the various processes involved in different stages of the entire nuclear fuel cycle, which include exploration of uranium, thorium, and other nuclear materials, mining and milling of ores, conversion of the separated nuclear material into nuclear grade, fabrication of different types of nuclear fuels and their physical as well as chemical quality control, thermodynamics of the interaction among fuel and fission products during reactor operation, post irradiation examination, spent fuel reprocessing, radioactive waste management, accounting and control of nuclear materials, and safety aspects involved in handling and transportation of nuclear materials. The book provides the fundamental knowledge to the practicing nuclear scientists and engineers, young researchers, and postgraduate students interested in pursuing a career in nuclear industry in general and those engaged in human resource development in the field of nuclear science and technology in particular. It can also be prescribed as a textbook for a course on nuclear fuel cycle at postgraduate level.


Author(s): B. S. Tomar, P. R. Vasudeva Rao, S. B. Roy, Jose P. Panakkal, Kanwar Raj, A. N. Nandakumar
Publisher: Springer
Year: 2023

Language: English
Pages: 456
City: Singapore

Foreword
Preface
Acknowledgements
Contents
Editors and Contributors
1 The Nuclear Fuel Cycle: Introduction
1.1 What Is a Fuel Cycle?
1.2 Frontend and Backend of Fuel Cycle
1.2.1 Frontend of Fuel Cycle
1.2.2 Backend of Fuel Cycle
1.3 Categories of Nuclear Fuel Cycle Based on Reuse Strategies
1.3.1 Open or “Once-Through” Fuel Cycle
1.3.2 Twice-Through Fuel Cycle
1.3.3 Closed or “Recycled” Fuel Cycle
1.4 Open Versus Closed Fuel Cycle Options
1.4.1 Impact of Closed Fuel Cycle on Waste Management
1.5 Variants of Closed Fuel Cycle
1.5.1 Closed Fuel Cycle Without MA Recovery
1.5.2 Closed Fuel Cycle with MA Recovery
1.5.3 Closed Fuel Cycle with MA and Fission Product Recovery
1.6 Challenges in the Development of Closed Fuel Cycle
1.7 International Scenario on Fuel Cycle
1.8 Summary
References
2 Exploration, Mining, Milling and Processing of Uranium
2.1 Uranium Ore Exploration and Mining
2.1.1 Geology
2.1.2 Mining of Uranium
2.1.3 Development of Process Flowsheet
2.2 Uranium Ore Processing
2.2.1 Mineralogy and Comminution
2.2.2 Pre-concentration by Physical Beneficiation
2.2.3 Leaching
2.2.4 Types of Leaching Based on Operational Mode
2.2.5 Solid–Liquid Separation and Clarification
2.2.6 Separation and Purification
2.2.7 Selective Separation of Uranium: Precipitation
2.2.8 Product Separation and Drying
2.2.9 Mill Waste Treatment
2.2.10 Reclamation and Closure
2.3 Refining of Yellow Cake and Uranium Metal Production
2.3.1 Dissolution of Diuranate Cake
2.3.2 Solvent Extraction
2.3.3 Ammonium Diuranate (ADU) Precipitation
2.3.4 Calcination of ADU
2.3.5 UO3 Reduction
2.3.6 Hydrofluorination of UO2
2.3.7 Uranium Metal Production by Metallothermy
2.3.8 Waste Management in Uranium Metal Production
2.3.9 Advanced Methods
2.4 Development of Uranium Supported Advanced Fuel Materials
2.4.1 Processing and Production of Thorium
2.4.2 Process Metallurgy
2.4.3 Process Engineering
2.4.4 Waste Management
2.5 Uranium Enrichment
2.5.1 Isotope Separation
2.5.2 Separation Processes for Uranium Enrichment
2.5.3 Requirements of an Ideal Enrichment Process
2.5.4 Process Flowsheet
2.5.5 Management of Depleted Stock
References
3 Fabrication of Nuclear Fuel Elements
3.1 Introduction
3.2 Nuclear Reactors and Their Fuels
3.3 Nuclear Non-power Reactors and Power Reactors
3.3.1 Research Reactors
3.3.2 Thermal Neutron Power Reactors
3.3.3 Fast Neutron Reactors
3.4 Types of Fuels
3.4.1 Ceramic Fuels
3.4.2 Dispersion Fuel
3.4.3 Metallic Fuels
3.5 Accident Tolerant Fuel (ATF) Concepts
3.6 Automation in Nuclear Fuel Manufacture
3.7 Summary
References
4 Quality Control of Nuclear Fuels
4.1 Introduction
4.2 Physical Quality Control Techniques
4.2.1 Powder Characteristics
4.2.2 Physical Inspection of Fuel Pellets
4.2.3 Metallography
4.2.4 Radiography Testing (RT)
4.2.5 Ultrasonic Inspection
4.2.6 Decontamination Check
4.2.7 Leak Testing
4.2.8 Radiation-Based Techniques for Fissile Distribution and Composition
4.2.9 Metrological Inspection of Hardware and Fuel Elements/Assemblies
4.3 Chemical Quality Control of Nuclear Fuels
4.3.1 Heavy Metal Content
4.3.2 Isotopic Composition
4.3.3 Phase Analysis
4.3.4 Oxygen to Metal Ratio (O/M)
4.3.5 Trace Metal Assay
4.3.6 Non-metallic Impurities
4.3.7 Total Gas Analysis
4.3.8 Dissolution Test
4.3.9 Weld Chemistry Test
4.3.10 Cover Gas Analysis
4.4 Summary
References
5 Thermophysical and Thermochemical Properties of Nuclear Fuels
5.1 Metallic Fuels
5.1.1 Uranium
5.1.2 Plutonium
5.1.3 Phase Equilibria in the System U–Pu
5.1.4 Phase Equilibria in the System U–Zr
5.1.5 Phase Equilibria in the System Pu–Zr
5.1.6 Phase Equilibria in the System U–Pu–Zr
5.1.7 Phase Equilibria in the System U–Al
5.1.8 Phase Equilibria in the System Pu–Al
5.1.9 Phase Equilibria in the System U–Si
5.1.10 Phase Equilibria in the System Pu–Si
5.2 Oxide Fuels
5.2.1 Phase Equilibria in the System Uranium–Oxygen
5.2.2 Phase Equilibria in the System Plutonium–Oxygen
5.2.3 Phase Equilibria in the System Thorium–Oxygen
5.2.4 Phase Equilibria in the System Uranium–Plutonium–Oxygen
5.2.5 Phase Equilibria in the Ternary System Uranium–Thorium–Oxygen
5.3 Carbide Fuels
5.3.1 Phase Equilibria in the System Uranium–Carbon
5.3.2 Phase Equilibria in the System Pu–C
5.3.3 Phase Equilibria in the System U–Pu–C
5.4 Nitride Fuels
5.4.1 Phase Equilibria in the System U–N
5.4.2 Phase Equilibria in the System Pu–N
5.4.3 Phase Equilibria in the System U–Pu–N
5.5 Oxygen Solubility in Carbides
5.6 Oxygen Solubility in Nitrides
5.7 Nitrogen Solubility in Carbides
5.8 Thermophysical and Chemical Properties of Nuclear Fuels
5.9 Basic Features of Thermophysical Properties
5.9.1 Thermal Conductivity
5.9.2 Thermal Expansion
5.9.3 Heat Capacity
5.9.4 Vaporization Characteristics of Fuels and Fission Products Components
5.9.5 Vapor Pressure Measurement Techniques
5.9.6 Vapor Pressure Related Characteristics of Fuel Materials
5.9.7 Thermochemical Aspects of UO2, (U,Pu)O2, (U,Pu)C, (U,Pu)N and Metallic Fuels
5.9.8 Oxide Fuels
5.9.9 Metallic Fuels [16, 20, 21]
5.9.10 Carbide and Nitride Fuels [16, 21]
References
6 Post Irradiation Examination of Fuel
6.1 Introduction
6.2 Purpose of PIE
6.2.1 Inputs and Outputs of PIE
6.3 Types of PIE
6.3.1 In-Pile/On-Line Examination
6.3.2 Pool-Side Inspection
6.3.3 PIE Using Hot Cells
6.4 Irradiation Damage in Solid Nuclear Fuels
6.5 Irradiation Effects in Fuels
6.5.1 Metallic Fuels
6.5.2 Ceramic Fuels
6.6 Irradiation Effects on Fuel Cladding
6.7 Techniques for PIE of Fuels
6.7.1 Non-destructive Testing Techniques
6.7.2 Destructive Techniques
6.8 Safety—Shielding, Radiological Safety
6.8.1 Built-In Safety Features of Hot Cells
6.9 Fuel Modelling
References
7 Nuclear Fuel Reprocessing
7.1 What is Nuclear Fuel Reprocessing?
7.2 Reprocessing and Its Role in Closing the Fuel Cycle
7.3 Aqueous Chemistry of Actinides
7.3.1 Actinide Chemistry
7.3.2 Actinide Oxidation States
7.3.3 Actinide Spectra
7.3.4 Disproportionation
7.3.5 Actinide Complexes
7.4 Reprocessing of Spent Fuel
7.4.1 History of Reprocessing of U–Pu-Based Fuels
7.4.2 Aqueous Reprocessing
7.4.3 PUREX Process
7.5 Fission Product Chemistry
7.5.1 Ruthenium (Ru)
7.5.2 Zirconium (Zr)
7.5.3 Technetium (Tc)
7.5.4 Niobium (Nb)
7.5.5 Yttrium and the Lanthanide Elements
7.5.6 Iodine (I)
7.5.7 Molybdenum (Mo)
7.5.8 Noble Gases
7.6 Challenges in Reprocessing of U–Pu-Based Fuels
7.7 Aqueous Processing of Thorium-Based Fuels
7.8 Reprocessing of Irradiated Thorium/Thoria Fuels and Targets
7.8.1 History of Thorium Reprocessing
7.9 Fast Reactor Fuel Reprocessing
7.9.1 General Issues in Fast Reactor Fuel Reprocessing
7.9.2 International Experience in Fast Reactor Fuel Reprocessing
7.9.3 Alternate Extractants for Fast Reactor Fuel Reprocessing:
7.9.4 Innovations for Fast Reactor Fuel Reprocessing
7.10 Non-aqueous Reprocessing
References
8 Radioactive Waste Management
8.1 Introduction
8.2 Radioactive Waste Classification
8.3 Characteristics of Radioactive Wastes
8.3.1 Types and Characteristics of LILW
8.3.2 Fuel Reprocessing Waste
8.3.3 High-Level Liquid Waste (HLLW)
8.3.4 Intermediate-Level Radioactive Liquid Waste
8.3.5 Organic Liquid Waste
8.3.6 Solid Waste
8.4 Basic Steps in Radioactive Waste Management
8.4.1 Segregation/Minimization
8.4.2 Pre-treatment
8.4.3 Treatment
8.4.4 Conditioning/Immobilization
8.4.5 Packaging/Transportation
8.4.6 Storage/Disposal
8.5 Management of LILW
8.5.1 Chemical Treatment Process
8.5.2 Ion Exchange/Sorption Process
8.5.3 Evaporation Process
8.5.4 Reverse Osmosis Process
8.5.5 Auxiliary Processes
8.6 Management of Organic Liquid Waste
8.6.1 Types of Organic Wastes
8.6.2 Organic Waste Treatment Processes
8.7 Recovery of Useful Radionuclides from Waste and Their Utilization
8.7.1 HLLW: Resource Material for Societal Benefit
8.7.2 Steps Involved in Recovery of Useful Radionuclides
8.7.3 Recovery of Cs from HLLW for Cs-Glass Pencil
8.7.4 Recovery of 90Sr/90Y
8.7.5 Separation of 106Ru
8.8 Actinide Partitioning
8.8.1 Process Development for Minor Actinides (MA) Separation
8.8.2 Approach to MA Partitioning
8.8.3 Bulk Separation of MA Along with Lanthanides
8.8.4 Group Separation of MA from Lanthanides
8.9 Vitrification of High-Level Liquid Waste
8.9.1 Conditioning of HLLW—A Necessary Processing Step
8.9.2 Glass—A Desired Matrix for Conditioning
8.9.3 Matrix Design Criteria
8.9.4 Vitrification Process
8.9.5 Energy Requirement
8.9.6 Single-Step Vitrification Process
8.9.7 Multi-step Vitrification Process
8.9.8 Product Quality Assurance in Vitrification
8.9.9 Treatment of Melter Off-Gas
8.9.10 Management of Secondary Waste
8.9.11 Vitrified Waste Canister Handling
8.10 Matrices for Vitrification
8.10.1 The Glassy State: A Brief Introduction
8.10.2 Glass Formation: Structural Theories
8.10.3 Glass Formation: Kinetic Theories and the TTT Curve
8.11 Melter Technologies for Vitrification
8.11.1 Induction-Heated Metallic Melter
8.11.2 Joule-Heated Ceramic Melter
8.11.3 Cold Crucible Induction Melter
8.12 Vitrification Experiences on the Industrial Scale
8.12.1 Vitrification Experience in France
8.12.2 Vitrification Experience in UK
8.12.3 Vitrification Experience in Germany/Belgium
8.12.4 Vitrification Experience in USSR
8.12.5 Vitrification Experience in India
8.13 Vitrified Waste Product Characterization
8.13.1 Acceptance Criteria
8.14 Radioactive Gaseous Waste Management
8.14.1 Ventilation and Air Cleaning Systems
8.14.2 Off-Gas Treatment System
8.14.3 Gaseous Waste Treatment Options
8.15 Management of Radioactive Solid Waste
8.15.1 Compaction
8.15.2 Incineration
8.15.3 Acid Digestion
8.15.4 Electrochemical Process
8.15.5 Mediated Electrolytic Dissolution
8.15.6 Electrolytic Dissolution
8.16 Storage of Vitrified Waste
8.16.1 Requirement of Storage Facility for Vitrified Waste
8.16.2 Heat Removal Methodology at Storage Vault
8.16.3 Optimization of Canister Dimensions
8.16.4 Illustrations of VWP Interim Storage Facilities
8.17 Disposal of Radioactive Waste
8.17.1 Near-Surface Disposal Facility
8.17.2 Geological Disposal Facilities
8.17.3 Other Types of Disposal Facilities
8.18 Summary
References
9 Nuclear Material Accounting and Control
9.1 Introduction to Nuclear Safeguards
9.2 Nuclear Materials
9.2.1 Significant Quantity (SQ)
9.3 Nuclear Material Accounting and Control (NUMAC)
9.3.1 Types of Facilities
9.3.2 Material Balance Area (MBA)
9.3.3 Key Measurement Points (KMP)
9.3.4 Database Management
9.3.5 Reporting System
9.3.6 Material Balance Period (MBP)
9.3.7 Material Unaccounted for (MUF)
9.4 Statistical Aspects in Nuclear Material Accounting
9.4.1 Classification of Data
9.4.2 Sampling and Statistical Inference
9.4.3 Hypothesis Testing
9.4.4 Test for Outliers
9.4.5 Confidence Limits/Intervals
9.4.6 Statistical Treatment of Uncertainties Associated with MUF
9.5 Physical Inventory Taking (PIT)
9.5.1 Destructive Methods of PIT
9.5.2 Non-destructive Methods for Physical Inventory Taking
9.6 Measurement Control Program [17]
9.7 Containment and Surveillance Techniques
9.8 Analysis of Environmental Samples
9.9 Summary
References
10 Transport and Storage of Nuclear Materials
10.1 Safety Standards for Transport of Nuclear Material
10.2 Radioactive Material Transported in Nuclear Fuel Cycle
10.3 Transport of Radioactive Material Relevant to the Front End of the Nuclear Fuel Cycle
10.4 Transport of Radioactive Material Relevant to the Back End of the Nuclear Fuel Cycle
10.5 Radiation Protection
10.6 Inherent Safety
10.7 The Significance of A1/A2 Values
10.8 Classification of Radioactive Materials
10.8.1 Special Form Radioactive Material
10.8.2 Low Dispersible Radioactive Material
10.8.3 Inherently Safe Low Specific Activity Material
10.8.4 Objects Not Radioactive but Contaminated on Their Surfaces
10.8.5 Distinguishing Between LSA or SCO
10.8.6 Fissile Material and Criticality Safety During Transport and Storage
10.8.7 Fissile-Excepted Material
10.8.8 Uranium Hexafluoride (UF6)
10.9 Passive Safety
10.9.1 Unpackaged Transport
10.9.2 Transport in Packages
10.9.3 Test Requirements for Packages
10.9.4 Graded Approach
10.10 Active Safety
10.10.1 Preparation of the Package
10.10.2 Determination of the Transport Index of the Package
10.10.3 Determination of the Category of the Package
10.10.4 Labelling
10.10.5 Transport Documents
10.10.6 Loading and Accumulation of Packages During Transport and Storage in Transit
10.10.7 Segregation of Packages During Transport and Storage
10.10.8 Stowage of Package
10.10.9 Additional Requirements Relating to Transport and Storage in Transit of Fissile Material
10.10.10 Special Additional Requirements for Transport by Air
10.10.11 Special Arrangement
10.10.12 Approvals
10.11 Regulatory Limits for a Package at a Glance
10.12 Emergency Response
10.13 Security of Transport of Radioactive Material
10.14 Summary
References
11 Radiation Protection
11.1 Part I Basic Principles of Radiation Protection
11.1.1 Introduction
11.1.2 Quantities and Units
11.1.3 Biological Effects of Radiation
11.1.4 External and Internal Exposures
11.1.5 System of Dose Limitation
11.1.6 Exposure Situations
11.2 Part II Application of the Principles of Radiation Protection in Nuclear Facilities
11.2.1 General Practical Considerations for All Nuclear Facilities
11.2.2 Specific Considerations for Radiation Protection in Nuclear Facilities
11.2.3 Emergency Management
11.2.4 Safety Culture
References
Index