Non-destructive Materials Characterization and Evaluation

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This book is devoted to non-destructive materials characterization (NDMC) using different non-destructive evaluation techniques. It presents theoretical basis, physical understanding, and technological developments in the field of NDMC with suitable examples for engineering and materials science applications. It is written for engineers and researchers in R&D, design, production, quality assurance, and non-destructive testing and evaluation. The relevance of NDMC is to achieve higher reliability, safety, and productivity for monitoring production processes and also for in-service inspections for detection of degradations, which are often precursors of macro-defects and failure of components. Ultrasonic, magnetic, electromagnetic and X-rays based NDMC techniques are discussed in detail with brief discussions on electron and positron based techniques.

Author(s): Walter Arnold, Klaus Goebbels, Anish Kumar
Series: Springer Series in Materials Science, 329
Publisher: Springer
Year: 2023

Language: English
Pages: 332
City: Berlin

Preface
Acknowledgements
Introduction
Contents
1 Ultrasonic Non-destructive Materials Characterization
1.1 Interatomic Forces and Elasticity
1.2 Elastic Constants
1.3 Ultrasonic Waves
1.4 Ultrasonic Velocity and Attenuation
1.5 Generation and Detection of Ultrasound
1.5.1 Piezoelectric Transducers
1.5.2 Near-Field and Beam Divergence of Transducers
1.5.3 Polarization of Piezoelectric Shear-Wave Transducers
1.5.4 Electromagnetic Acoustic Transducers (EMATs)
1.5.5 Laser-Generated Ultrasound and Optical Interferometric Detection
1.6 Scanning Acoustic Microscopy
1.7 Acoustic Impedance
1.8 Ultrasonic Velocity in Single Crystals
1.9 Ultrasonic Velocity in Polycrystalline Materials
1.9.1 Basic Relations
1.9.2 Monitoring of Microstructural Damage by Ultrasonic Velocity Measurements
1.10 Measurement of Elastic Properties by Dynamic Techniques
1.11 Measurement of Stresses using Ultrasonic Velocity
1.11.1 Strains and Stress in Materials
1.11.2 Third-Order Elastic Constants of Polycrystalline Materials and Sound Velocity
1.11.3 Bulk Stresses and Acoustical Birefringence
1.11.4 Hydrostatic Pressure
1.11.5 Near Surface Stresses and Surface Waves
1.11.6 Plate Stress and Shear Horizontal Waves
1.11.7 Uniaxial Stresses
1.11.8 Biaxial Surface Stresses
1.11.9 Sound Velocity, Temperature, and Stresses
1.12 Critical Angle Reflectometry
1.13 Acoustic Nonlinearity Parameter
1.14 Acoustoelastic Constants (AEC)
1.15 Texture
1.16 Stress and Texture
1.16.1 Texture and Birefringence Constant
1.16.2 Birefringence Dispersion
1.17 Attenuation, Scattering, and Absorption of Ultrasonic Waves
1.17.1 Absorption
1.17.2 Attenuation Due to Scattering – Basic Concepts
1.17.3 Scattering in Single-Phase Polycrystalline Materials
1.17.4 Advanced Theories of Ultrasonic Scattering
1.17.5 Concepts of Backscattering
1.17.6 Grain Size Measurements
1.17.7 Detection of Porosity Agglomerations
1.17.8 Detection of Inhomogeneities in Polycrystalline Materials by Backscattering
1.18 Creep
1.19 Fatigue
1.20 Embrittlement
1.21 Hydrogen Attack
1.22 Micro-cracks
1.23 Grain Size in Polycrystalline Materials and Yield Strength
1.24 Kramers-Kronig (K-K) or Dispersion Relations
1.24.1 Theoretical Background
1.24.2 Applications of K-K Relations to Ultrasonic Relaxation Phenomena
1.24.3 Applications of K-K Relations to Ultrasonic Scattering
1.24.4 Applications of K-K Relations to Ultrasonic Absorption
1.24.5 Applications of K-K Relations to Ultrasonic Resonance Spectroscopy
References
2 Non-destructive Materials Characterization using Ionizing Radiation
2.1 NDMC using X-rays
2.2 Properties of X- and γ-rays
2.2.1 Electromagnetic Spectrum and Energy of X- and γ-rays
2.2.2 Sources of X- and γ-rays
2.2.3 X-ray Detectors
2.2.4 Attenuation of X-rays
2.2.5 Diffraction of X-rays
2.3 Applications of X-ray Interaction with Matter for NDMC
2.3.1 Application of the Photoelectric Effect in X-ray Emission Spectroscopy
2.3.2 Principle of X-ray Computed Tomography and Laminography
2.3.3 Applications of X-ray Computed Tomography in NDMC
2.3.4 Dual-Energy Computed Tomography
2.3.5 X-ray Transmission Imaging and Computed Tomography using Synchrotron Radiation for NDMC
2.3.6 X-ray Microscopy and its Applications in NDMC
2.4 Application of X-ray Diffraction for NDMC
2.4.1 Identification of an Unknown Specimen by XRD
2.4.2 Quantitative Analysis of Volume Fraction of Constituent Phases by XRD
2.4.3 Stress Measurements by XRD
2.4.4 The sin2ψ Law for Stress Measurements by XRD - Angle Dispersive Measurements
2.4.5 Stress Measurements by Two-Dimensional X-ray Diffraction Data
2.4.6 Deviations from the Linear Behavior of the sin2ψ Law
2.4.7 Stress Measurement by XRD - Energy Dispersive Measurements
2.4.8 Stress Measurement by XRD in Anisotropic Polycrystalline Materials
2.4.9 Applications of X-ray Stress Measurements for NDMC
2.4.10 Texture and its Representation
2.4.11 Principle of Texture Evaluation by XRD
2.4.12 Applications of XRD for Texture Evaluation
2.4.13 Line-Widths of X-ray Diffraction Spots
2.4.14 Grain Size and Particle Size Measurements by XRD
2.4.15 Estimation of Dislocation Density
2.4.16 Precipitation of Secondary Phases
2.5 NDMC using Neutrons
2.5.1 Properties of Neutrons Relevant for NDMC
2.5.2 Interaction of Neutrons with Materials Relevant for NDMC
2.5.3 Neutron Radiography for NDMC
2.5.4 Stress Measurements by Neutron Diffraction
2.5.5 Texture Measurements by Neutron Diffraction 
2.5.6 Materials Degradation Studies by Neutron Diffraction
2.6 NDMC using Electrons and Positrons
2.6.1 Electron Backscatter Diffraction
2.6.2 NDMC by Positron Annihilation Spectroscopy
References
3 Non-destructive Materials Characterization by Electromagnetic Techniques
3.1 Basic Concepts of NDMC Based on Electromagnetism
3.1.1 Electrical Conductivity
3.1.2 Skin Effect
3.1.3 Physical Origin of Magnetism in Materials
3.1.4 Hysteresis and Domain Walls of Magnetic Materials
3.2 NDMC by Eddy Current Techniques
3.2.1 Basics of Eddy Current Testing for NDMC
3.2.2 Impedance Plane: Influence of Conductivity and Permeability of Materials
3.2.3 Quality Assurance of Materials by Eddy Current Techniques
3.2.4 Multi-frequency Eddy Current Techniques
3.2.5 Hysteresis in Ferromagnetic Materials and Eddy Current Techniques
3.2.6 Sorting of Materials by Eddy Current Techniques
3.2.7 Quality Monitoring of Composite Materials by Microwave Eddy Current Techniques
3.2.8 Sorting of Materials and Waste Management
3.3 NDMC by Micromagnetics
3.3.1 Basic Ideas of Micromagnetism for NDMC
3.3.2 Motion of Bloch Walls and Micromagnetism
3.3.3 Material Properties and Magnetic Hysteresis Loop
3.3.4 Material Properties and Magnetic Barkhausen Emissions
3.3.5 Applications of Micromagnetism for Microstructure and Grain Size Measurements
3.3.6 Applications of Micromagnetism for Material Strength Parameter Measurements
3.3.7 Applications of Micromagnetism for Hardness and Hardening Depth Measurements
3.3.8 Applications of Micromagnetism for Stress Measurements
3.3.9 3MA Technique
3.3.10 Commercial Instruments
References
Index