Mobile Robots - Current Trends

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Издательство InTech, 2011, -414 pp.
We are all witnesses that the beginning of the 21st century in technological terms is dedicated to mobile communications - they are everywhere: smartphones, Ipads, ereaders, and many other wireless devices. Once a fiction, today is a reality – music on demand, video on demand, live video conversation via IP on a tablet. What will be the next technological achievement that will have such huge impact on human living? I dare to predict that the second half of this century will by highly influenced by mobile robotics – robots will become ubiquitous décor in everyday life.
Over the past century, anthropomorphic machines have become familiar figures in popular culture through books such as Isaac Asimov’s I, Robot, movies such as Star Wars and television shows such as Star Trek. The popularity of robots in fiction indicates that people are receptive to the idea that these machines will one day walk among us as helpers and even as companions. Nevertheless, although robots play a vital role in industries such as automobile manufacturing - where there is about one robot for every 10 workers - we have a long way to go before real robots catch up with their sciencefiction counterparts.
One reason for this gap is that it has been much harder than expected to give robots the capabilities that humans take for granted - for example, the abilities to orient themselves with respect to the objects in a room, to respond to sounds and interpret speech, and to grasp objects of varying sizes, textures and fragility.
The improvement of hardware electronics and decreasing of the components prices enabled the robot builders to add Global Positioning System chips, video cameras, array microphones (which are better than conventional microphones at distinguishing a voice from background noise), and a host of additional sensors for a reasonable expense. The resulting enhancement of capabilities, combined with expanded processing power and storage, allows today’s robots to do things such as vacuum a room or help to defuse a roadside bomb - tasks that would have been impossible for commercially produced machines just a few years ago. The confidence for the robot rising is based on recent developments in electronics and software, as well as on the observations of robots, computers and even living things over the past 30 years.
In October 2005, several fully autonomous cars successfully traversed a hazard-studded 132-mile desert course, and in 2007 several successfully drove for half a day in urban traffic conditions. In other experiments within the past few years, mobile robots mapped and navigated unfamiliar office suites, and computer vision systems located textured objects and tracked and analyzed faces in real time. Meanwhile, personal computers became much more adept at recognizing text and speech. A second generation of universal robots with a 100,000 MIPS (mouse-brain) will be adaptable, as the first generation is not, and will even be trainable. Besides application programs, such robots would host a suite of software conditioning modules that would generate positive and negative reinforcement signals in predefined circumstances. For example, doing jobs fast and keeping its batteries charged will be positive; hitting or breaking something will be negative. There will be other ways to accomplish each stage of an application program, from the minutely specific (grasp the handle underhand or overhand) to the broadly general (work indoors or outdoors). As jobs are repeated, alternatives that result in positive reinforcement will be favored, those with negative outcomes shunned.
By the end of the century, humans will meet monkeylike five million MIPS, embedded in a third generation of robots, that will learn very quickly from mental rehearsals in simulations that model physical, cultural and psychological factors. Physical properties will include shape, weight, strength, texture and appearance of things, and ways to handle them. Cultural aspects will include an items’s name, value, proper location and purpose. Psychological factors, applied to humans and robots alike will include goals, beliefs, feelings and preferences.
This book consists of 18 chapters divided in four sections: Robots for Educational Purposes, Health-Care and Medical Robots, Hardware – State of the Art, and Localization and Navigation. In the first section, there are four chapters covering autonomous mobile robot Emmy III, KCLBOT – mobile nonholonomic robot, and general overview of educational mobile robots. In the second section, the following themes are covered: walking support robots, control system for wheelchairs, leg-wheel mechanism as a mobile platform, micro mobile robot for abdominal use, and the influence of the robot size in the psychological treatment. In the third section, there are chapters about I2C bus system, vertical displacement service robots, quadruped robots – kinematics and dynamics model and Epi.q (hybrid) robots. Finally, in the last section, the following topics are covered: skid-steered vehicles, robotic exploration (new place recognition), omnidirectional mobile robots, ball-wheel mobile robots, and planetary wheeled mobile robots.
I hope that this book will be a small contribution towards the general idea of making the mobile robots closer to the humans.
Robots for Educational Purposes
Autonomous Mobile Robot Emmy III
Mobile Robotics in Education and Research
The KCLBOT: A Framework of the Nonholonomic Mobile Robot Platform Using Double Compass Self-Localisation
Gaining Control Knowledge Through an Applied Mobile Robotics Course
Health–Care and Medical Robots 87
Walking Support and Power Assistance of a Wheelchair Typed Omnidirectional Mobile Robot with Admittance Control
A Control System for Robots and Wheelchairs: Its Application for People with Severe Motor Disability
Mobile Platform with Leg-Wheel Mechanism for Practical Use 1
A Micro Mobile Robot with Suction Cups in the Abdominal Cavity for NOTES
Influence of the Size Factor of a Mobile Robot Moving Toward a Human on Subjective Acceptable Distance
Hardware – State of the Art
Development of Mobile Robot Based on I2C Bus System
Construction of a Vertical Displacement Service Robot with Vacuum Cups
A Kinematical and Dynamical Analysis of a Quadruped Robot
Epi.q Robots
Localization and Navigation
Dynamic Modeling and Power Modeling of Robotic Skid-Steered Wheeled Vehicles
Robotic Exploration: Place Recognition as a Tipicality Problem
The Development of the Omnidirectional Mobile Home Care Robot
Design and Prototyping of Autonomous Ball Wheel Mobile Robots
Advances in Simulation of Planetary Wheeled Mobile Robots

Author(s): Gacovski Z. (Ed.)

Language: English
Commentary: 768114
Tags: Автоматизация;Робототехнические системы (РТС)