Minimum Quantity Lubrication Machining: Process Analysis and Analytical Modeling

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This book focuses on the effect of minimum quantity lubrication (MQL) on the mechanical and thermal history, which will mainly determine the quality of the machined components. By analyzing the details of the lubrication and cooling effects in MQL machining, the book provides readers with an accurate and fast way to predict the residual stress of machined components. These process analyses and quality prediction will be beneficial for understanding the MQL machining theory and its widespread application in industry.

Author(s): Xia Ji
Publisher: Springer
Year: 2022

Language: English
Pages: 136
City: Singapore

Foreword
Preface
Contents
About the Editor
1 Introduction
1.1 Background
1.2 Literature Review of Machining Induced Residual Stress
1.2.1 Experimental Efforts in Residual Stress
1.2.2 Finite Element Research of the Residual Stress
1.2.3 Analytical Modeling of Residual Stress
1.3 Literature Review of Minimum Quantity Lubrication Machining
1.3.1 Literature Review of MQL Experimental Investigation
1.3.2 Literature Review of MQL Analytical Modeling
1.4 Motivation of the Research
1.5 Arrangement of Chapter
References
2 The Effects of MQL on Tribological Attributes in Machining
2.1 Penetration Mechanism of Cutting Medium
2.1.1 Penetration Mechanism of Convectional Flood Cooling Machining
2.1.2 Penetration Mechanism of MQL Machining
2.2 Lubrication Effect of MQL
2.2.1 Lubrication Mechanism of MQL
2.2.2 Friction Coefficient in MQL
2.3 Cooling Effect of MQL
2.3.1 Cooling Mechanism of MQL
2.3.2 Heat Transfer Coefficient in MQL
2.4 Summary
References
3 Force-Temperature Coupled Prediction Model
3.1 Predictive Modeling of Cutting Force Based on Orthogonal Cutting
3.1.1 Chip Formation Force Model
3.1.2 Plowing Force Model
3.2 Predictive Modeling of Cutting Temperature
3.2.1 Temperature Model in Workpiece
3.2.2 Temperature Model in Chip
3.2.3 Temperature Model in Tool
3.3 Force-Temperature Coupled Model
3.3.1 Modified Oxley’s Predictive Model
3.3.2 Iterative Coupling Model of Cutting Force and Cutting Temperature
3.4 Comparison of Cutting Force Prediction Models
3.4.1 Comparison of Model Inputs and Application Scope
3.4.2 Comparison of Predicted Cutting Force
3.5 Summary
References
4 Residual Stress Model in MQL Machining
4.1 Prediction of Stress Distribution
4.1.1 Stress Due to Mechanical Load
4.1.2 Stress Due to Thermal Load
4.1.3 Stress Analysis
4.2 Residual Stress Prediction Model
4.2.1 Model Criteria
4.2.2 Load History
4.2.3 Relax Process
4.3 Comparison of Residual Stress Prediction Models
4.3.1 Comparison of Assumption of Two Prediction Models
4.3.2 Comparison of Results of the Prediction Models
4.4 Summary
References
5 Experimental Validation by Orthogonal Cutting of AISI 4130 Alloy
5.1 Experimental Method
5.1.1 Design of the Workpiece
5.1.2 Design of the Setup
5.1.3 Design of the Measurement
5.2 Analysis of Experimental Results and Model Verification
5.2.1 Determination of the Parameter in the Prediction Model
5.2.2 Validation of Cutting Force
5.2.3 Validation of Cutting Temperature
5.2.4 Validation of Residual Stress Prediction Model
5.3 Summary
References
6 Sensitivity Analysis of Machined Residual Stress in MQL Machining
6.1 Selection of the Parameters
6.2 Influence of MQL Parameters
6.2.1 Influence of Boundary Lubrication Film Thickness
6.2.2 Influence of Air-Oil Mixture Ratio
6.3 Influence of Cutting Parameters
6.3.1 Influence of Cutting Speed
6.3.2 Influence of Feed Rate
6.3.3 Influence of Cutting Width
6.4 Influence of Tool Parameters
6.4.1 Influence of Tool Rake Angle
6.4.2 Influence of Tool Edge Radius
6.5 Summary