Meteorology for Coastal Scientists

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This is a textbook for non-atmospheric specialists who work in the coastal zone. Its purpose will be to help coastal environmental, engineering, and planning professionals to understand coastal atmospheric processes. This in turn will allow more effective communication with climate modelers, atmospheric environmental consultants, and members of the media. The coastal environment is among the most intensively used and chronically abused components of the Earth-ocean-atmosphere system. It is also home to an ever-increasing proportion of humanity with their increasing development, trade, transportation, and industrial activities, amid increasing impacts of natural hazards. The atmosphere is an integral part of the system, with all of the above human activities affecting and being affected by atmospheric processes and hazards. Yet few of the specialists studying the coastal environment have expertise on atmospheric processes, this therefore presents a highly relevant textbook on coastal atmospheric processes.

Author(s): Robert V Rohli; Chunyan Li
Edition: 1
Publisher: Springer Nature Switzerland
Year: 2021

Language: English
Pages: xiii; 525
City: Cham
Tags: Atmospheric Sciences; Oceanography; Natural Hazards

Foreword
Content
Style
Acknowledgements
Contents
Part I: Introduction to Our Coastal Atmosphere
Chapter 1: Scope, Uniqueness, and Importance of Our Coastal Atmosphere
1.1 What Is Coastal Meteorology?
1.2 Boundary Layer Structure and Function
1.3 Scale in Coastal Meteorology
1.4 The Importance of Coastal Meteorology
Chapter 2: Atmospheric Composition, Structure, and Evolution
2.1 Definitions and Introduction
2.2 Composition of the Air
2.3 Vertical Structure of the Air
2.4 Evolution of the Air
Part II: Thermodynamics in Our Coastal Atmosphere
Chapter 3: Energy Transfer and Electromagnetic Radiation
3.1 Energy Transfer
3.2 Electromagnetic Radiation
3.3 Solar Radiant Energy
3.4 Shortwave Radiation Exchanges in the Earth–Ocean–Atmosphere System
3.5 Longwave Radiation Exchanges in the Earth–Ocean–Atmosphere System
3.6 Radiation and Energy Balance
3.7 The Convective (Turbulent) Fluxes
3.8 Net Radiation
3.9 What Distinguishes the Coastal Atmospheric Energy Budget?
Chapter 4: Temperature
4.1 General
4.2 Temperature Scales
4.3 Temperature Terms
4.4 Land/Water Temperature Differences
4.5 Radiation, Energy, and Temperature
4.6 Geographical Temperature Patterns
4.7 Temperature in the Future
Chapter 5: Application of the Gas Laws in Meteorology
5.1 Introduction
5.2 Pressure–Temperature–Volume Relationships
5.3 Equation of State for an Ideal Gas
Chapter 6: The Hydrostatic Equation and Adiabatic Processes
6.1 The Hydrostatic Equation
6.2 The First Law of Thermodynamics Applied to an Air Parcel
6.3 The Unsaturated Adiabatic Lapse Rate
Chapter 7: Atmospheric Moisture
7.1 General
7.2 Absolute Humidity
7.3 Vapor Pressure (e) and Saturation Vapor Pressure (es)
7.4 Relative Humidity (RH)
7.5 Specific Humidity (q)
7.6 Mixing Ratio (r)
7.7 Wet-Bulb Temperature (Tw)
7.8 Dew Point Temperature (Td)
7.9 Equation of State for Humid Air
7.10 Virtual Temperature (Tv)
Chapter 8: Atmospheric Stability and Potential Temperature
8.1 Introduction
8.2 Environmental Lapse Rate
8.3 Assessing Stability
8.4 The Saturated Adiabatic Lapse Rate (Γs)
8.5 Conditional Instability
8.6 The Nature of Turbulence
8.7 Summary
8.8 Potential Temperature (θ)
8.9 Equivalent Potential Temperature (θe)
Chapter 9: Measuring and Estimating Atmospheric Stability
9.1 Broadscale Measurement
9.2 Estimation of Stability Using Available Data
9.3 Local Measurement: The Gradient Richardson Number
Chapter 10: Using Thermodynamic Diagrams in Meteorology
10.1 Soundings
10.2 Layout of the Skew-T Log-P Diagram
10.3 Representing Weather Conditions on the Skew-T Log-P Diagram
10.4 Examples of Soundings
10.5 Radiosonde Hodographs
Chapter 11: Clouds
11.1 Introduction
11.2 Cloud Formation Processes
11.3 Cloud Forms
11.4 Cloud Families
11.5 Cloud Names
Chapter 12: Precipitation Processes and Types
12.1 Precipitation Processes
12.2 Precipitation Forms
12.3 Other Factors Affecting Precipitation Amounts
12.4 Precipitation in the Future
Part III: Dynamic Processes in Our Coastal Atmosphere
Chapter 13: Pressure and Winds
13.1 Introduction
13.2 Pressure and the Pressure Gradient Force
13.3 Examples of the Pressure Gradient Force
Chapter 14: Coriolis Effect
14.1 Introduction
14.2 How Does It Work?
14.3 Geostrophic Balance
Chapter 15: Effect of Friction
15.1 Introduction
15.2 Flow Around Anticyclones and Cyclones
Chapter 16: Centripetal Acceleration and the Gradient Wind
16.1 Introduction
16.2 The Gradient Wind (VG)
16.3 Supergeostrophic vs. Subgeostrophic Flow
16.4 Convergence and Divergence in Rossby Wave Flow
16.5 Vorticity
Chapter 17: Gravitation
17.1 Relationship Between Gravity and Vertical Persistence of Pressure Features
17.2 Upper-Level Winds
Chapter 18: The Seven Basic Equations in Weather Forecasting Models
18.1 Introduction
18.2 The Navier–Stokes Equations of Motion
18.3 The Thermodynamic Energy Equation
18.4 The Moisture Conservation Equation
18.5 The Continuity Equation
18.6 Role of the Equation of State for an Ideal Gas in Models
18.7 Current Leading Weather Forecasting Models
Chapter 19: Comparison of Weather Forecasting Models and General Circulation Models
19.1 Similarities
19.2 Differences
Chapter 20: General Circulation of the Atmosphere
20.1 Introduction
20.2 Circulation If Earth Did Not Rotate
20.3 Circulation with a Rotating Earth
20.4 The Hadley Cells and Conservation of Angular Momentum
20.5 The Polar Cells
20.6 Mid-Latitude Westerlies
20.7 The Poleward Transfer of Westerly Momentum
20.8 General Circulation in the Future
Part IV: Weather Systems in the Coastal Zone
Chapter 21: Air Masses
21.1 Introduction to Air Masses
21.2 What Determines the Characteristics of an Air Mass?
21.3 Air Mass Classification
21.4 Characteristics of the Air Masses
Chapter 22: Atmospheric Lifting Mechanisms
22.1 Introduction
22.2 Convectional Lifting
22.3 Surface Horizontal Convergence
22.4 Orographic Lifting
22.5 Frontal Lifting
Chapter 23: Fronts and the Mid-Latitude Wave Cyclone
23.1 Introduction
23.2 Types of Fronts
23.3 The Mid-Latitude Wave Cyclone
23.4 The Life Cycle of a Mid-Latitude Wave Cyclone
23.5 Common Tracks of Mid-Latitude Wave Cyclones in North America
23.6 Future Trends in Mid-Latitude Wave Cyclone Activity
Chapter 24: Thunderstorms
24.1 Introduction
24.2 Air Mass Thunderstorms
24.3 Severe Thunderstorms
24.4 Other Mechanisms That Can Produce or Enhance Thunderstorms
24.5 Geographical Distribution of Thunderstorms
24.6 Future Trends in Thunderstorm Activity
Chapter 25: Lightning
25.1 Introduction
25.2 How Does It Work?
25.3 Sheet Lightning and Within-Cloud Lightning
25.4 Cloud-to-Surface Lightning
25.5 Special Types of Lightning
25.6 Thundersnow
25.7 Lightning Safety
Chapter 26: Tornadoes and Waterspouts
26.1 General
26.2 Review of Gradient Winds
26.3 Cyclostrophic and Other Simplifications from Gradient Winds
26.4 Tornado Development
26.5 Tornado Migration
26.6 Tornado-Related Phenomena
26.7 The Enhanced Fujita Scale
26.8 Geographical Distribution of Tornadoes
26.9 Future Trends in Tornado Activity
Chapter 27: Advising the Public About the Severe Weather Risk
27.1 Introduction
27.2 Severe Weather Indices
27.3 Watches vs. Warnings
27.4 The Bane of the Warning Coordination Meteorologist: Tricky, Localized Severe Weather Features
Chapter 28: Tropical Cyclones
28.1 General
28.2 Tropical Cyclone Development
28.3 Tropical Cyclone Properties
28.4 Vertical Features
28.5 Tropical Cyclone Motion
28.6 Categories of Tropical Cyclone Strength
28.7 Seasonality
28.8 Associated Hazards
28.9 Future Trends: Atlantic Tropical Cyclones
Chapter 29: Coastal Flooding
29.1 Introduction
29.2 Causative Factors
29.3 Proxy Evidence for Coastal Storms of the Past
29.4 Future Trends: Coastal Flooding
Chapter 30: Coastal Drought
30.1 Dry Coastal Areas
30.2 Causative Factors
30.3 Future Trends: Coastal Drought
Chapter 31: Winter Storms
31.1 Introduction
31.2 Rainfall/Snowfall Equivalents
31.3 Lake Effect Snowfall
31.4 Future Trends: Winter Storms
Chapter 32: Sea Ice and Weather Systems
32.1 Density of Water and the Formation of Sea Ice
32.2 Types of Sea Ice
32.3 World Distribution
32.4 Effects on Ocean
32.5 Other Effects of Sea Ice on Atmosphere
32.6 Future Trends: Sea Ice
Chapter 33: Summary of Energy Transfer by Atmospheric and Oceanic Motion
33.1 Putting It All Together
Part V: Atmospheric Boundary Layers and Air-Sea Interaction
Chapter 34: Introduction to Near-Surface Atmospheric Dynamics
34.1 Introduction
34.2 The Free Atmosphere
34.3 The Laminar Boundary Layer (LBL)
34.4 The Surface Boundary Layer (SBL)
34.5 The Ekman Layer and Planetary Boundary Layer (PBL)
34.6 Fetch in the Surface Boundary Layer
Chapter 35: The Logarithmic Wind Profile in Neutral Stability Conditions
35.1 Introduction
35.2 Assumptions
35.3 Mixing Length
35.4 The Integrated Neutral Wind Profile
Chapter 36: Non-neutral or Diabatic Wind Profile
36.1 Introduction
36.2 Isotropic and Anisotropic Eddies
36.3 The Dimensionless Wind Shear Adjustment
Chapter 37: Introduction to the Transition (or Ekman) Layer
37.1 Terms
37.2 Eddy Viscosity
Chapter 38: The Classical Solution to the Atmospheric Ekman Spiral
38.1 Applying the Reynolds Equations to the Ekman Layer
38.2 Simplifying Assumptions
38.3 The Imaginary Component of the Equations
38.4 The Derivation
38.5 What Does It All Mean?
Chapter 39: Fundamentals of Air-Sea Interactions
39.1 Introduction
39.2 Energy, Matter, and Momentum Storage and Exchange
39.3 Broadscale Effect of the Ocean
Chapter 40: Weather Effects on the Coastal Ocean
40.1 Discussion on Scales
40.2 Inertial Oscillations
40.3 Tide and Storm Tide
40.4 Storm Surge
40.5 The Simplest Storm Surge—Static Air Pressure Effect
40.6 Storm Surge Contributed by Other Factors
40.7 Local and Remote Wind Effects in Estuaries and Bays
40.8 Effect of the Speed of Tropical Cyclones
40.9 Asymmetric Process of Inundation and Receding
Chapter 41: Wind Stress and Turbulent Flux Drag Coefficients Over Water
41.1 Drag Coefficient
41.2 Air-Sea Interactions at Temperature Discontinuities
Part VI: Air-Sea-Land Interaction
Chapter 42: Surface Fluxes of Energy, Moisture, and Momentum
42.1 Eddy Covariance Method
42.2 Review of the Momentum Flux
42.3 Eddy Flux Equations for Sensible and Latent Heat
42.4 Scintillometry
Chapter 43: Sea and Land Breezes
43.1 The Sea Breeze
43.2 The Sea-Breeze Front
43.3 Demise of the Sea Breeze
43.4 The Land Breeze
43.5 Comparing the Sea Breeze and Land Breeze
43.6 Comparison to Monsoons
Chapter 44: Coastal Fog
44.1 Introduction
44.2 Types of Fog
Chapter 45: Coastal Upwelling and Weather
45.1 The Ekman Layer in the Ocean
45.2 Upwelling from the Ekman Spiral
45.3 Influence of Upwelling on Land Breezes
45.4 Seasonal Upwelling and Downwelling
45.5 Upwelling in the Non-coastal Ocean
Chapter 46: Atmospheric Impacts on Lake Processes
46.1 Temperature and Water Density
46.2 Seasonal Turnover
46.3 Stable Season vs Unstable Season
46.4 The Role of the Thermocline
46.5 Why Do Lake Levels Sometimes Oscillate?
Chapter 47: Coastal Jets
47.1 General
47.2 The Gulf of Mexico Low-Level Jet
47.3 The Caribbean Low-Level Jet
47.4 Other Important Coastal Jet Streams Worldwide
47.5 Barrier Jets
Chapter 48: Atmospheric Optical Effects in the Coastal Zone
48.1 Review of the Properties of Light
48.2 Crepuscular Rays
48.3 Mirages
48.4 Rainbows
48.5 Other Optical Effects
Chapter 49: Solar Radiation in Aquatic Systems
49.1 Sunlight in the Ocean
49.2 The Solar Constant
49.3 Irradiance at the “Top” of the Atmosphere
49.4 Attenuation of Solar Radiation in the Air
49.5 Refraction and Attenuation of Solar Radiation in Water
Part VII: Dispersion and Engineering Applications
Chapter 50: Meteorology and Climatology of Coastal Cities
50.1 The Urban Heat Island
50.2 Enhancing Storm Resilience in Urban Design
Chapter 51: Atmospheric Dispersion in the Coastal Zone
51.1 Introduction
51.2 Qualitative Assessment
51.3 Quantitative Estimates of Plume Dispersion
51.4 The Case of Capping Inversions
Chapter 52: Engineering Aspects of the Wind Profile
52.1 Introduction
52.2 The Case of Neutral Stability
52.3 The Case of Non-neutral Stability
52.4 Depicting Wind Speed Frequencies
52.5 Estimating Gusts
52.6 Remote Sensing of Offshore Winds
52.7 Calculating the Force of Wind
Appendices
Appendix A: Système International Units Commonly Used in Meteorology
Relationships Between the Fundamental Entities, and Their Derived SI Units
Appendix B: “Retired” Atlantic-Caribbean-Gulf of Mexico Hurricane Names
References
Index