Metamaterial-Based Optical and Radio Frequency Sensing

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This book highlights the fundamentals and practical methods of metamaterials-based optical and radio frequency sensing. Combined with engineering practices, the book illustrates in detail wide frequency electromagnetic signal cloaking and the detection behavior of metasurfaces, including the structure of metasurfaces, electric-controlled behaviors, layout design and fabrication methods, and related experiment results. This book is expected to inspire the research and development of new optical and radio frequency detectors. It is suitable for researchers and engineers working on semiconductor devices, applied optics, and wide frequency signal detection. It is also a good reference for students in these areas.

Author(s): Jun Luo, Dong Wei, Xinyu Zhang
Series: Advances in Optics and Optoelectronics
Publisher: Springer-NDIP
Year: 2023

Language: English
Pages: 243
City: Beijing

Preface
About This Book
Contents
About the Authors
1 Ideas of Optical Frequency-RF Signal Detection
1.1 Features of Optical, Infrared, and RF Wave Detection
1.2 Properties of the Terahertz Spectrum
1.3 Generation, Detection and Typical Application of Terahertz Waves
1.3.1 Generation of Terahertz Waves
1.3.2 Detection of Terahertz Wave
1.3.3 Typical Applications of Terahertz Technology
1.3.4 Broad-Spectrum Detection of Metamaterial Micro/Nano Structure Arrays
References
2 Fundamentals of Terahertz Detectors
2.1 Terahertz Wave Detector
2.2 Principle and Properties of Left-Handed Materials
2.2.1 Principle of Left-Handed Materials
2.2.2 Properties of Left-Handed Materials
2.2.3 Realization of Left-Handed Materials
Reference
3 Metamaterial Detection Methods
3.1 Basic Characteristics of Metamaterials
3.2 Microstructure and Electronics Configuration of Metamaterial Devices
3.3 Morphological Characteristics of Resonance Element
3.4 Metamaterial Functional Devices and Their Applications
3.4.1 Terahertz Signal Detection by Energy Absorption
3.4.2 Terahertz Signal Regulation and Sensing by Voltage Drive
3.4.3 Planar Nano-Tip Light Wave Regulation
4 Numerical Simulation of Metamaterials
4.1 Finite-Difference Time-Domain (FDTD)
4.2 Frequency Domain Finite Element Method (FD-FEM)
4.2.1 Boundary Problems in the Numerical Calculation of Electromagnetic Fields
4.2.2 Steps of Frequency Domain Finite Element Method
4.2.3 Simulation Algorithm Performance
4.3 S-Parameter Model in Electromagnetic Field Calculation
4.4 Simulation Properties of Typical SRR Element Microstructure Metamaterials
4.4.1 Terahertz Transmission Properties of Typical Microstructure Pattern Metamaterials
4.4.2 Influence of Opening Size on Resonance Characteristics
4.4.3 Influence of Line Width on Resonance Frequency
4.5 Summary
5 Design and Fabrication of Metamaterial Devices
5.1 Semiconductor Based Metamaterials
5.2 Key Fabrication Process of Metamaterials
5.2.1 Cleaning and Film-Formation
5.2.2 Photoresist Coating
5.2.3 Soft Baking
5.2.4 Alignment and Exposure
5.2.5 Post Exposure Bake (PEB)
5.2.6 Development
5.2.7 Hardening
5.2.8 Etching
5.2.9 Photolithography Inspection
5.2.10 Wafer Cutting
5.2.11 Pressure Welding
5.3 Layout Characteristics of Planar Metamaterial Detectors Based on Micro/Nano Semiconductor Processes
5.4 Typical Process Flow of Schottky Metamaterials
5.5 Evaluation and Analysis on Electronic Properties of Schottky Metamaterials
5.6 Summary
6 Modeling of Infrared Long-Wave Detection for Metamaterials
6.1 Modeling of Metamaterial Detection Architecture
6.1.1 Electromagnetic Properties Simulation of Terahertz Metamaterials
6.1.2 Electronic Characteristics Simulation of Long Wave Infrared Metamaterials
6.2 Photoelectric Response Testing Scheme
6.3 Photoelectric Response Test Electrode
6.4 Summary
7 Metamaterial Signal Sensing Based on Continuous Terahertz Waves
7.1 Preface
7.2 Generation and Measurement of Continuous Wave Terahertz (CW-THz) Lasers
7.3 Design and Fabrication of Terahertz Band Metamaterial Devices
7.3.1 Metamaterial Device Model
7.3.2 Metamaterial Device Fabrication Process
7.4 Transmission Characteristics of Metamaterial Devices in Terahertz Bands
7.4.1 Experimental Principle and Apparatus
7.4.2 Experimental Analysis on Transmission Properties of Metamaterials Based on Multi-Band Continuous Terahertz Waves
7.4.3 Simulation of Transmission S-Parameter of Metamaterials Under Terahertz Frequency Bands
7.5 Summary
References
8 Signal Sensing of Electrically Controlled Metamaterials Based on Terahertz Time-Domain Spectra (THz-TDS)
8.1 Preface
8.2 Structural Design and Fabrication of Electrically Controlled Metamaterial Devices
8.3 Transmission Properties of Dipole Model Metamaterials in Reflective THz-TDS
8.3.1 Reflective Time-Domain Pulsed Terahertz Wave
8.3.2 Terahertz Transmission Properties of Metamaterials
8.4 Transmission Behavior of Metamaterials in Photoconductive THz-TDS Based on Fabry-Pérot Model
8.4.1 Photoconductive Antenna THz-TDS System
8.4.2 Theoretical Analysis on Terahertz Waves Generated by Photoconductive Antennas
8.4.3 Terahertz Transmission Properties of Electrically Controlled Metamaterials
8.5 Summary
References
9 Induction and Detection of Optical Frequency Infrared Signals by Metamaterials
9.1 Preface
9.2 Induction and Detection of Near Infrared Laser by Metamaterials
9.2.1 Near Infrared Semiconductor Laser
9.2.2 Principle Analysis on Near Infrared Semiconductor Laser
9.2.3 Scheme and Architecture
9.2.4 Near Infrared Laser Sensing of Metamaterials
9.3 Induction and Detection of Blackbody Infrared Wave by Metamaterials
9.3.1 Sensing Properties of Metamaterials to Blackbody Radiation
9.4 Summary
References
10 Induction and Detection of RF Millimeter Wave Signals by Metamaterials
10.1 RF Millimeter Wave Characteristics
10.2 Millimeter Wave Sensing of Metamaterials
10.2.1 Scheme and Apparatus
10.2.2 Sensing Properties and Analysis of Metamaterials to Millimeter Waves
10.3 Summary
References
11 Subwavelength Stealth Technology of Metamaterials
11.1 Metamateria-Based Antireflection Technology
11.1.1 Nano-Tip-Structure Based Electromagnetic Antireflection Technology
11.1.2 Inner-Ring-Tip Antireflection Film
11.2 Vertical-Tip Metamaterials
11.2.1 Fabrication of Vertical-Tip Metamaterials
11.2.2 Optical Near-Field Properties of Vertical-Tip Metamaterials
11.2.3 Reflection Characteristics of Vertical-Tip Metamaterials
11.3 Electrically Controlled Infrared Transmittance Metamaterials
11.3.1 Electrically Controlled Infrared Transmittance Metamaterial
11.3.2 Electrically Controlled Transmission Characteristics of Electrically Controlled Infrared Transmittance Metamaterials
11.3.3 Current–Voltage Characteristics of Electrically Controlled Infrared Reflectivity Metamaterials
11.3.4 Controlling Principle of Electronically Controlled Infrared Transmission Metamaterials
11.4 Electrically Controlled Infrared Reflective Liquid Crystal (LC) Metamaterial Devices
11.4.1 Electrically Controlled Infrared Reflective LC Metamaterials
11.4.2 Electrical Control Characteristics of LC Metamaterial Devices
References
12 Optical Frequency-RF Integrated Detection Architecture Based on Metamaterials
12.1 Optical Frequency-RF Detection Architecture
12.2 Detected Microstructure Characteristics
12.3 Summary