Metal Phosphates and Phosphonates: Fundamental to Advanced Emerging Applications

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This book provides fundamental electrochemical behavior and understanding of devices based on Metal Phosphates and Phosphonates. The basic concepts, properties and emerging applications of these materials as batteries, supercapacitors, fuel cells, sensors, biomedical and environmental are covered. Apart from conventional techniques, this book explores new aspects of synthesizing Metal Phosphates and Phosphonates. 


Author(s): Ram K. Gupta
Series: Engineering Materials
Publisher: Springer
Year: 2023

Language: English
Pages: 400
City: Cham

Contents
An Introduction
1 Introduction
2 Ancient Point of View
3 Synthesis of Metal Phosphate and Phosphonates
3.1 Micro Porous Metal Phosphate
3.2 Mesoporous Metal Phosphates
3.3 Mechanochemical Synthesis
4 Applications
4.1 Medication Transport Implementation
4.2 Electrode Materials/Proton Conduction for Fuel Cells
4.3 Electrochemistry of Water Splitting
4.4 Bioceramics
5 Standpoints and Obstacles for the Forthcoming
6 Conclusion
References
Hierarchically Porous Metal Phosphates and Phosphonates: Emerging Materials Toward Advance Applications
1 Introduction
2 Synthesis of Porous Metal Phosphonates
2.1 Layered Metal Phosphonates
2.2 MOFs–Phosphonates
2.3 Templated Porous Metal Phosphonates
3 Applications of Porous Metal Phosphonates
3.1 Adsorption
3.2 Heterogeneous catalysis
3.3 Electrochemical Energy Storage
3.4 Solar Cells and Photoelectrochemical Reactions
3.5 Electrochemical Water Splitting
3.6 Membrane Materials
3.7 Biomaterials
3.8 Proton Conduction
3.9 Other Applications Including Challenges and Future Outlook
4 Conclusion
References
Rich Structural Chemistry of Metal Phosphates/Phosphonates for Emerging Applications: V, Ti-containing Materials
1 Introduction
2 Structures and Merits
3 Typical Applications
3.1 Heterogenous Catalysis
3.2 Ion Exchange and Adsorption/Separation
3.3 Surface Modification
3.4 Selective Sensing
3.5 Energy Storage and Conversion
4 Challenges and Perspectives
References
Electrochemistry of Metal Phosphates and Phosphonates
1 Introduction
2 Properties and Applications of Metal Phosphates and Phosphonates
3 Electrochemistry of Metal Phosphates and Phosphonates and Their Applications
3.1 Energy Storage Devices
3.2 Water Splitting Applications
4 Conclusion
References
Fundamentals of Electrochemical Energy Devices
1 Introduction
2 Synthesis Methods
2.1 Hydrothermal/Solvothermal Method
2.2 Chemical Precipitation Method
2.3 Other Methods
3 Fundamental Mechanisms
3.1 Intercalation Mechanism
3.2 Conversion Reaction Mechanism
4 Conclusion
References
Principles of Catalysis
1 Introduction
2 Theoretical Background
3 Confinement-Induced Catalysis
4 Fluxionality
5 Conclusion
References
Metal Phosphates/Phosphonates as Catalysts for HER
1 Introduction
2 Fundamental Mechanisms of HER
3 Parameters for HER Activity Evaluation
3.1 Overpotential
3.2 Tafel Slope
3.3 Electrochemical Impedance
3.4 Stability
3.5 Turnover Frequency
3.6 Faradic Efficiency
4 MPis/MPPis as Catalysts for HER
4.1 Cobalt Phosphates/Phosphonates
4.2 Nickel Phosphates/Phosphonates
4.3 Iron Phosphates/Phosphonates
4.4 Other Metal Phosphates/Phosphonates
4.5 Polymetallic Metal Phosphates/Phosphonates
5 Conclusions and Prospects
References
Metal Phosphate/Phosphonates for Hydrogen Production and Storage
1 Introduction
2 Roles of Metal Phosphate/Phosphonates for Hydrogen Production and Storage
2.1 Metal Phosphate/Phosphonates as Electrocatalysts
2.2 Metal Phosphate/Phosphonates as Photocatalysts
2.3 Metal Phosphate/Phosphonates for Hydrogen Production from Biomass
2.4 Metal Phosphate/Phosphonates for Thermochemical Hydrogen Production
3 Hydrogen Production Technologies by Metal Phosphate/Phosphonates
3.1 Biohydrogen Technology
3.2 Fermentative Hydrogen Production
3.3 Photoelectrolytic and Electrochemical Method
3.4 Photocatalytic Hydrogen Production
3.5 Thermo-chemical Water Splitting
4 Phosphorous-Based Hydrogen Fuel Cells
5 Hydrogen Storage by Metal Phosphate/Phosphonates
6 Conclusion
References
Polyphosphate-Based Electrocatalysts for Oxygen Evolution
1 Introduction
2 Fundamentals
2.1 OER
2.2 POMs
3 Electrocatalytic OER
3.1 Metal Phosphates and Phosphonates
3.2 Transition Metal-Based Heteropolyanions: POMs
3.3 Nanocomposites
4 Role of Magnetic Field on OER
5 Concluding Remarks
References
Metal Phosphates/Phosphonates for Membranes
1 Introduction
2 Metal Phosphates
2.1 Metal Salts of Phosphoric Acid
2.2 Metal Salts of Pyrophosphoric Acid
2.3 Metal Salts of Hydrocarbyloxy Phosphoric Acids
2.4 Other Inorganic Metal Phosphates
3 Metal Phosphonates
3.1 Metal Salts of Alkyl Phosphonic Acids
3.2 Metal Salts of Aryl Phosphonic Acids
3.3 Other Metal Salts of Phosphonic Acids
4 General Remarks
References
Metal Phosphates/Phosphonates for Fuel Cells
1 Introduction
2 Synthesis of Phosphate- and Phosphonate-Based Materials
2.1 Synthesis of Phosphate-Based Materials
2.2 Synthesis of Phosphonate-Based Materials
3 Characterization for Understanding Micro- and Nanostructures
4 Mechanism and Electrocatalytic Performance of ORR
4.1 Mechanism of ORR
4.2 Electrocatalytic Performance of ORR
5 Design Strategies for Highly Efficient Metal Phosphate and Phosphonate Electrocatalysts
5.1 Increase of Catalytically Active Site Density
5.2 Optimization of Electronic Structure
5.3 Construction of Heterostructure
6 Recent Developments as Proton Exchange Membranes in Fuel Cells
7 Conclusions and Perspectives
References
Metal Phosphates/Phosphonates for Biofuels
1 Introduction
2 Metal Phosphates/Phosphonates
3 Application of Metal Phosphates/Phosphonates
3.1 Adsorption
3.2 Electrochemical Energy Storage
3.3 Biomaterials
3.4 Heterogeneous Catalysis
4 Biofuels
5 Classification of Biofuels
5.1 Biodiesel
5.2 Drop-in Biofuels
5.3 Bioethanol
6 Biofuel Generation Technology
7 Role of Metal Phosphates in Biofuel Production
7.1 Upgradation of Lignocellulose Biomass into Biofuel
7.2 Production of Biodiesel from Metal Phosphates
8 Metal Phosphonates for Biodiesel Production
8.1 Zinc Phosphonate for Biodiesel Production
8.2 Zirconium Phosphate for Biodiesel Production
8.3 Iron Phosphonate for Biodiesel Production
9 Limitations of Metal Phosphate Catalysts
10 Conclusion and Future Perspectives
References
Phosphates and Phosphonates as Photocatalysts for Environmental and Energy Applications
1 Introduction
2 Mechanism of Photocatalyst
3 Phosphates as Photocatalyst
4 Phosphonates as Photocatalyst
5 Conclusion
References
Metal Phosphates/Phosphonates for Supercapacitor Applications
1 Introduction
2 Phosphate-Based Electrode Materials
2.1 Ammonium Cobalt/Nickel Phosphate for SCs Electrode
2.2 Cobalt Phosphate as SCs Electrode
2.3 Potassium Cobalt Phosphate Electrode for Flexible ASCs
2.4 Sodium Cobalt Phosphate Electrode for SCs
2.5 Nickel Phosphate Electrodes for SCs
2.6 Cobalt Nickel Phosphate Electrodes for SCs
2.7 Manganese Phosphate (Mn3(PO4)2 as Electrode for SCs
3 Metal Phosphonates as Electrodes for Supercapacitors
3.1 Mesoporous Mn Phosphonates
3.2 Nickel Phenylphosphonate Microspheres
3.3 Zr Posphonates
3.4 Ti-Phosphonate Metal–Organic Framework
3.5 Phosphonate-Derived Nanoporous Metal Phosphates
3.6 Cu-Naphthalene-Phosphonate Metal–Organic Framework
3.7 Zn Phosphonate
4 Conclusions and Outlook
References
Polyoxometalate Archetypes as Supercapacitor Materials
1 Introduction
2 POMs and Opportunities
3 Synthetic Protocols
4 Structural and Morphological Features
5 Supercapacitor Application of POMs
6 Conclusions
References
Transition Metal Phosphates/Phosphonates for Lithium-Ion Batteries
1 Introduction
2 Lithium Transition Metal Phosphates
2.1 Olivine-Type Phosphates
2.2 LiFePO4
2.3 LiMnPO4
2.4 LiNiPO4 and LiCoPO4
2.5 NASICON Type Phosphates
2.6 Li3V2(PO4)3
2.7 Tavorite Type Phosphates
3 Lithium Transition Metal Phosphonates
4 Conclusion and Future Perspectives
References
Metal Phosphates for Environmental Remediation: Adsorptive Removal of Dyes from Wastewater
1 Introduction
1.1 Water Pollution
1.2 Methods for the Removal of Dye-Containing Wastewater
1.3 Adsorption
1.4 Adsorbents
2 Metal Phosphates
3 Dye Adsorption with Metal Phosphates
4 Conclusions
5 Prospects
References
Recent Insights in the Utilization of Metal Phosphonates for Remediation of Dye-Polluted Wastewaters
1 Introduction
1.1 Remediation of Dye-Polluted Wastewater by Adsorption
1.2 Adsorbents for Environmental Remediation
2 Metal–Organic Frameworks
3 Metal Phosphonates
4 Use of MPs in the Adsorptive Removal of Dyes from Aqueous Media
4.1 Results and Discussion of Findings
5 Conclusions
6 Prospects
References
Metal Phosphates: Their Role as Ion Exchangers in Water Purification
1 Introduction
1.1 Ion Exchanger
1.2 Classification
1.3 Metal Phosphates as Ion Exchangers
2 Hybrid Metal Phosphates (HMPs)
2.1 Synthesis of HMPs
2.2 Types of HMPs
2.3 Applications of HMPs in Water Purification
3 Conclusion
References
Metal Phosphates/Phosphonates for Biomedical Applications
1 Introduction
2 Preparative Techniques
2.1 Soft Templating Route
2.2 Hard Templating Route
2.3 Template-Free Synthesis Route
3 Cytotoxicity of Metal Phosphate and Phosphonates
3.1 Tetrazolium Reduction Assay
3.2 MTT Assay
3.3 Neutral Red (NR) and Coomassie Blue (CB) Assay
3.4 Lactate Dehydrogenase (LDH) Leakage Assay
3.5 Highest Tolerance Doses
4 Applications
4.1 Biomedical Applications
5 Conclusion
References
Metal Phosphate and Phosphonate Application for Imaging and Diagnosis
1 Introduction
2 Technetium
3 Zirconium
4 Iron Oxide
5 Gadolinium
6 Copper
7 Titanium
8 Terbium
9 Lutetium
10 Indium
11 Conclusion
References
Advances and Challenges in the Fabrication of Porous Metal Phosphate and Phosphonate for Emerging Applications
1 Introduction
2 Synthesis Methods of TMPs
2.1 Co-precipitation Method
2.2 Structure-Directing Method
2.3 Hydrated Metal Phosphate-Derived Method
2.4 Organophosphonate-Derived Method
2.5 Other Methods
3 Applications
3.1 Energy Storage
3.2 Separation and Extraction
3.3 Fuel Cells Electrode Materials
3.4 Catalysis
3.5 Biomaterials
3.6 Proton Conduction
3.7 Membrane Materials
4 Summary and Future Outlook
References