Metal-Organic Frameworks (MOFs) for Environmental Applications

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Metal-Organic Frameworks for Environmental Applications examines this important topic, looking at potential materials and methods for the remediation of pressing pollution issues, such as heavy-metal contaminants in water streams, radioactive waste disposal, marine oil-spillage, the treatment of textile and dye industry effluents, the clean-up of trace amounts of explosives in land and water, and many other topics. This survey of the cutting-edge research and technology of MOFs is an invaluable resource for researchers working in inorganic chemistry and materials science, but it is also ideal for graduate students studying MOFs and their applications.

Author(s): Sujit K. Ghosh
Publisher: Elsevier
Year: 2019

Language: English
Pages: 451

Cover......Page 1
Metal-Organic Frameworks (MOFs) for Environmental Applications......Page 3
Copyright......Page 4
List of Contributors......Page 5
1 Introduction......Page 8
References......Page 10
2.1 Introduction—the societal relevance of carbon capture and sequestration......Page 12
2.2 Spectrum of performance parameters and criteria for evaluation of sorbents......Page 16
2.2.1 Working capacity......Page 17
2.2.2 CO2 selectivity, Sads(CO2)......Page 18
2.2.3 Regenerability......Page 21
2.2.3.2 Sorption kinetics......Page 22
2.2.5 Sorbent cost based upon substrates......Page 23
2.3 Overall evaluation of sorbent performance: sorbent selection parameters......Page 24
2.4.1 Point-source CO2 capture......Page 25
2.4.1.1 Postcombustion......Page 26
2.4.1.2 Precombustion......Page 27
2.4.2 Direct air capture of CO2......Page 28
2.4.3.2 Natural gas sweetening......Page 29
2.5.1 Ionic liquids......Page 30
2.5.2 Solid adsorbents......Page 31
2.5.2.1 Chemical adsorbents/chemisorbents......Page 32
2.5.2.2 Physical adsorbents/physisorbents......Page 34
2.6 Metal-organic frameworks......Page 35
2.6.1 Unsaturated metal centers......Page 39
2.6.2 Amine-functionalized sites......Page 42
2.6.3.1 Metal-organic frameworks in which organic ligands are used to control pore size and pore chemistry......Page 45
2.6.3.2 Ultramicroporous materials that are based upon combinations of organic and inorganic linker ligands (hybrid ultrami.........Page 48
2.7 Summary and future outlook......Page 52
2.7.1 Immediate challenges......Page 53
2.7.2 The next big challenge......Page 54
References......Page 56
3.2 Design of metal clusters and organic linkers......Page 69
3.4 Selectivity......Page 70
3.5.3 Calcium-based metal-organic framework FJI-H9 [10]......Page 71
3.5.4 Copper-based metal-organic framework utilizing sulfonic acid moieties [12]......Page 73
3.6 Chromium......Page 74
3.6.2 Speciation and reactivity......Page 75
3.6.3 Cadmium metal-organic framework for Cr(VI) sensing and sorption [19]......Page 76
3.6.4 Zirconium metal-organic framework MOR-2 high Cr(VI) adsorption [20]......Page 77
3.7.2 Speciation......Page 79
3.7.3 Lanthanide-based metal-organic framework for selective detection of Pb(II) [27]......Page 80
3.7.4 Electrochemical DNA-functionalized porphyrinic metal-organic framework for Pb(II) sensing [29]......Page 81
3.8 Mercury......Page 83
3.8.2 Speciation......Page 84
3.8.3 Postsynthetically modified UiO-66 for selective detection [35]......Page 85
3.8.4 UiO-66-NH2 DNA [37]......Page 87
3.8.5 Nickel-based metal-organic framework for visual detection and selective remediation [39]......Page 89
3.9 Radioactive wastes......Page 90
3.9.3 Cryptand inspired metal-organic framework for detection and adsorption [42]......Page 91
3.9.4 Metal-organic framework-based ion traps for irreversible barium adsorption [43]......Page 92
3.9.5 Terbium-based metal-organic framework for selective uranium detection [45]......Page 94
References......Page 96
List of abbreviations......Page 100
4.1 Introduction......Page 101
4.1.1 Classification of anionic pollutants......Page 103
4.1.2 State-of-art for remediation of such pollutants......Page 104
4.1.3.1 Neutral metal-organic frameworks......Page 105
4.1.3.2 Ionic metal-organic frameworks......Page 106
4.1.4.2 Anion recognition......Page 107
4.2.1 Sensing of anionic pollutants......Page 108
4.2.1.1 Oxoanion pollutants......Page 109
4.2.1.2 Cyanide......Page 112
4.2.1.3 Other anions......Page 114
4.2.2.1.1 Cr(VI)-based oxoanion pollutants......Page 116
4.2.2.1.2 Radioactive oxoanion pollutants......Page 124
4.2.2.1.3 Selenium-based oxoanion pollutants......Page 128
4.2.2.1.4 Arsenic-based oxoanion pollutants......Page 129
4.2.2.1.5 Trapping of other inorganic anions (phosphate/fluoride, etc.)......Page 130
4.2.2.2 Capture of organic anionic pollutants......Page 132
4.2.3 Performance of metal-organic frameworks compared with known materials......Page 135
4.3 Conclusion and future outlook......Page 136
Acknowledgments......Page 137
References......Page 138
List of abbreviations......Page 146
5.1 Context: volatile organic compounds, detrimental effects, emission sources, and removal......Page 147
5.2.1 Hydrocarbons: from saturated to unsaturated molecules......Page 150
5.2.2 Alcohols......Page 155
5.2.3 Carbonyl compounds: aldehydes, ketones, and carboxylic acids......Page 159
5.3.1 Sulfur-containing compounds: sulfur dioxide......Page 163
5.3.2 Sulfur-containing compounds: hydrogen sulfide......Page 165
5.3.3 Carbon monoxide......Page 168
5.3.4 Nitric oxide......Page 170
5.4 Conclusion and perspectives......Page 173
References......Page 174
6.1 Introduction......Page 184
6.2 Nerve agent detoxification pathways and simulants......Page 187
6.3 Early generation supramolecular catalysts......Page 190
6.4 Metal-organic framework catalysts......Page 194
6.5 Catalytic metal-organic framework composites: textiles and antidotes......Page 199
6.6 Conclusion and outlook......Page 201
References......Page 202
7.1 Introduction......Page 208
7.2.1 Synthesis approaches......Page 209
7.2.1.2 Mechanochemical synthesis......Page 210
7.2.1.5 Electrochemical synthesis......Page 211
7.2.2.1 Thermodynamic stability factors and examples......Page 212
7.2.3 Modifications of metal-organic frameworks......Page 213
7.2.3.2 Pore expansion......Page 214
7.2.4.2 Thermal annealing of metal-organic frameworks......Page 215
7.3.2.1 Sensing mechanism......Page 216
7.3.2.2 Luminescent sensors......Page 218
7.3.3.1 Organic dyes adsorption by metal-organic frameworks......Page 220
7.3.3.3 Emerging organic contaminants......Page 222
7.3.4.1 Generation of hydroxyl radicals......Page 223
7.3.4.3 Generation of sulfate radical......Page 225
7.4 Conclusion......Page 226
References......Page 227
List of abbreviations......Page 235
8.1.1 Background of explosive materials......Page 236
8.1.2 Current methods/materials and mechanism for detection of nitro-aromatic compounds......Page 239
8.2 Luminescent metal-organic frameworks......Page 242
8.2.1 Ligand-based luminescence in metal-organic frameworks......Page 243
8.2.2 Metal node or cluster-based luminescence in metal-organic frameworks......Page 246
8.2.3 Excimer or exciplex formation in metal-organic frameworks......Page 248
8.2.4 Adsorbed lumophores-based luminescence in metal-organic frameworks......Page 249
8.3 Recognition of nitrated high energy materials by metal-organic frameworks......Page 250
8.3.1 Recognition of nitro-aromatic compounds in vapor phase......Page 252
8.3.2 Detection of nitro-aromatic compounds by metal-organic frameworks in common organic solvents......Page 256
8.3.3 Sensing of nitro-aromatic compounds with metal-organic frameworks in water medium......Page 262
8.4 Non-nitro-aromatic high energy materials sensing with metal-organic frameworks......Page 266
8.5 Desensitization of nitro-explosives and related materials by metal-organic frameworks......Page 270
8.5.1 Construction of insensitive energetic metal-organic frameworks by using N-rich linkers......Page 272
8.5.2 Encapsulation of energetic components inside metal-organic frameworks......Page 274
8.5.3 Metal-organic frameworks as precursor to prepare insensitive energetic materials......Page 276
8.6 Conclusions and future outlooks......Page 277
References......Page 279
9.1 Introduction......Page 288
9.2 Why metal-organic frameworks can be catalysts for the deoxygenation of fatty acids to transport fuels?......Page 289
9.3 MOF powder catalysts for the conversion of fatty acids into transport liquid fuel hydrocarbons......Page 290
9.4 Supported ZIF-67 catalysts for the conversion of oleic acid into transport liquid fuel hydrocarbons......Page 293
9.5 Supported ZIF-67 catalysts for the conversion of saturated acids into transport liquid fuel hydrocarbons......Page 300
9.6 Supported Ni-MOFs catalysts for the conversion of oleic acid into transport liquid fuel hydrocarbons......Page 307
9.7 Promising metal-organic framework compositions......Page 313
9.8 Outlook and conclusion......Page 314
References......Page 315
10.1 Introduction......Page 322
10.3 Models of superhydrophobicity......Page 325
10.4 Bulk metal-organic framework structures for superhydrophobic applications......Page 326
10.5 Nanoscale superhydrophobic/self-cleaning metal-organic frameworks based on oligo-(p-phenyleneethynylenes) linkers......Page 332
10.6 Metal-organic framework nanocomposites for oil/water separation......Page 335
10.7 CO2 capture and its necessity......Page 345
10.8 Bulk superhydrophobic metal-organic frameworks used for CO2 storage......Page 346
10.9 Effect of NMOF/MOFNPs-composite for CO2 uptake under humid condition......Page 347
References......Page 351
11.1 Introduction......Page 358
11.2 Design principles of metal-organic frameworks for sequestering radionuclides......Page 359
11.3.1 Cesium and strontium......Page 361
11.3.2 Uranium......Page 362
11.3.3 Thorium......Page 367
11.3.4 Selenium and technetium......Page 368
11.3.5 Iodine......Page 373
11.3.6 Krypton and xeon......Page 376
11.4 Summary and outlook......Page 377
Acknowledgments......Page 379
References......Page 380
12.1 Introduction......Page 386
12.2 Classification of metal-organic framework–based devices for sensing......Page 387
12.2.1 Mechanochemical response......Page 388
12.2.2 Optical response......Page 392
12.2.3 Electrochemical response......Page 394
12.3.1 Detection of toxic gases......Page 398
12.3.2 Detection of volatile organic compounds......Page 401
12.3.3 Detection of pollutants in water......Page 406
12.4.1 Preconcentrators......Page 408
12.4.2 Filtration devices......Page 414
12.4.3 Fluidic devices......Page 418
12.5 Summary......Page 420
References......Page 421
Index......Page 430
Back Cover......Page 451