Membranes for Water Treatment and Remediation

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This book provides comprehensive description of polymeric membranes in water treatment and remediation. It describes both the sustainability challenges and new opportunities to use membranes for water decontamination. It also discusses the environmental-related issues, challenges and advantages of using membrane-based systems and provides comprehensive description of various polymeric membranes, nanomaterials, biomolecules and their integrated systems for wastewater treatment. Various topics covered in this book are direct pressure-driven and osmotic-driven membrane processes, hybrid membrane processes (such as membrane bioreactors and integrating membrane separation with other processes), and resource recovery-oriented membrane-based processes. The book will be useful for students, researchers and professionals working in the area of materials science and environmental chemistry.

Author(s): Ashok Kumar Nadda, Priya Banerjee, Swati Sharma, Phuong Nguyen-Tri
Series: Materials Horizons: From Nature to Nanomaterials
Publisher: Springer
Year: 2023

Language: English
Pages: 298
City: Singapore

Preface
Contents
About the Editors
1 Polymeric Membranes for Water Treatment
1 Introduction
2 Polymers Used for Membrane Filtration (Water Treatment)
3 Membrane Processes and Polymers Used
3.1 Nanofiltration
3.2 Microfiltration (MF) and Ultrafiltration (UF)
3.3 Reverse Osmosis (RO)
4 Types of Polymeric Membrane
4.1 Porous Membrane
4.2 Nonporous Membrane
5 Polymer Membrane Filtration Process
6 Membrane Fouling
6.1 Fouling Control
7 Future Research
8 Pros and Cons of Polymeric Membranes
9 Applications
10 Discussion
11 Conclusion
References
2 Sustainable Wastewater Treatment Using Membrane Technology
1 Introduction
2 Causes of Water Pollution
2.1 Domestic Wastewater
2.2 Municipal Wastewater
2.3 Industrial Wastewater
2.4 Agricultural Runoff
2.5 Sewage from Septic Tank
2.6 Rainwater
3 Common Steps Involved in Wastewater Treatment
3.1 Pre-treatment
3.2 Primary Treatment
3.3 Secondary Treatment
3.4 Tertiary Treatment
4 Techniques Available for Wastewater Treatment
4.1 Physical Methods
4.2 Chemical Methods
4.3 Biological Methods
5 Polymeric Membrane for Pollution Remediation
5.1 Membrane Processes
6 Conclusion
References
3 Polymeric Nanocomposite Membranes for Treatment of Industrial Effluents
1 Introduction
2 Membrane Technology for Water Remediation
2.1 Types of Membrane Process in Water Remediation
3 Polymers: Ideal Material for Membrane Fabrication
3.1 Polymers for MF
3.2 Polymers for UF
3.3 Polymers for NF
3.4 Polymers for RO
3.5 Nanocomposite Membranes
4 Preparation Approaches Towards PM
4.1 Electrospinning
4.2 Track Etching
4.3 Sintering
4.4 Phase Inversion
4.5 Stretching
5 Membrane Antifouling Approaches
5.1 Microbial Mediated Antifouling
5.2 Inorganic/Organic Antifouling in PMWR
5.3 Bio-enzyme Antibacterial Mediated Antifouling
5.4 Surface Roughness Mediated Antifouling PMWR
6 Polymeric Membranes for Effluent Treatment in Different Industries
6.1 Food Industries
6.2 Pharmaceutical Industries
6.3 Textile Industries
6.4 Leather Industries
6.5 Petroleum Industries
7 Challenges and Outlook
8 Conclusion
References
4 Polymeric Nano-composite Membranes for Waste Water Treatment
1 Introduction
1.1 Polymer Composites
1.2 Classification of Polymer Composites
1.3 Manufacturing Methods
1.4 Applications of Polymer Composites
2 Polymer-Nanocomposites
3 Polymer Nanocomposites for Water Treatment
3.1 Polymer-Carbon Composites
3.2 Silicon-Based Polymer Nano Composites
3.3 Polymer–Polymer Nano Composites
3.4 Polymer-Clay Composites
4 Conclusion
References
5 Membrane-Based Technologies for Industrial Wastewater Treatment
1 Introduction
2 Industrial Wastewater
3 Toxicity of Industrial Wastewater
4 Polymeric Membrane-Mediated Industrial Wastewater Treatment
4.1 Cellulose-Based Membranes for Wastewater Treatment
4.2 Chitosan-Based Membranes for Wastewater Treatment
4.3 Alginate-Based Membranes for Wastewater Treatment
4.4 Other Organic Materials-Based Membranes for Wastewater Treatment
5 Conclusions
References
6 Membrane Bioreactor: A Potential Stratagem for Wastewater Treatment
1 Introduction
2 Membrane Material and Types
3 Membrane Bioreactor (MBR)
3.1 Configuration of Membrane Bioreactor
3.2 How Does Membrane Bioreactor Work?
3.3 Biological Performance of MBR
3.4 Application of MBR
4 Comparison Between MBR and Conventional Sludge System
5 Advantages and Disadvantages of MBR
6 Future Prospect
7 Conclusion
References
7 Removal of Toxic Emerging Pollutants Using Membrane Technologies
1 Introduction
2 Emerging Pollutants
2.1 Occurrences and Classification
2.2 Significance
2.3 Guidelines for Disposal of EPs
3 Conventional Technologies for the Removal of EPs
3.1 Adsorption Technique
3.2 Flotation Technique
3.3 Precipitation
3.4 Oxidation Technique
3.5 Solvent Extraction
3.6 Electrochemical Technique
3.7 Biodegradation
3.8 Evaporation
3.9 Ion Exchange Process
4 Membrane-Based Technologies for the Removal of Emerging Pollutants
4.1 Microfiltration
4.2 Ultrafiltration
4.3 Nanofiltration
4.4 Reverse Osmosis
4.5 Forward Osmosis
4.6 Hybrid Processes
5 Membrane Materials Used in Membrane Technology for the Treatment of Emerging Pollutants
5.1 Graphene Membrane
5.2 Ceramic-Polymer Composite Membrane
5.3 Fly Ash Membrane
5.4 Silica Membrane
5.5 Zeolite Membrane
5.6 Clay Assisted Membrane
5.7 Metal–Organic Framework
5.8 Carbon Nanotube Membranes
5.9 Activated Carbon Membrane
5.10 Chitosan Membrane
5.11 Factors Affecting the Use of These Materials in Membrane Technology for the Removal of Emerging Pollutants
6 Challenges and Future Perspectives of Membrane Technology
6.1 Economic Factor
6.2 Membrane Fouling
6.3 Cleaning of Membranes
6.4 Future Perspectives and Challenges for Membrane Materials
6.5 Alternatives and Scope for Overcoming Existing Challenges
7 Conclusion
References
8 Biopolymeric Hydrogels: A New Era in Combating Heavy Metal Pollution in Industrial Wastewater
1 Introduction
2 History of Hydrogels
3 Heavy Metal Removal from Water Using Hydrogels
3.1 Removal of Mercury Ions
3.2 Lead Ion Removal
3.3 Cadmium Ion Removal
3.4 Arsenic Ion Removal
3.5 Removal of Chromium Ions
4 Conclusion and Future Prospect
References
9 Resource Recovery from Wastewater Using Polymeric Membranes
1 Introduction
2 Significance of Polymeric Membranes
3 Resources Recovered Using Polymeric Membranes
3.1 Methane
3.2 Ammonia
3.3 Metal Ions
3.4 Energy
3.5 Organic Compounds and Dyes
4 Limitations of Polymeric Membranes
5 Strategies for Increasing Membrane Efficiency
5.1 Use of Composite Polymer Membranes
5.2 Methods for Controlling Membrane Wetting
5.3 Methods for Controlling Membrane Fouling
6 Conclusion
References
10 Antibacterial and Antifouling Properties of Membranes
1 Introduction
2 Life Cycle of Biofouling
3 Properties of Membrane Favouring Biofouling
4 Enhancing Antifouling Behaviour of Membranes
4.1 Membrane Surface Modification
4.2 Incorporation of Nanomaterials in Membrane Matrix
4.3 Inclusion of Enzymes in Membrane Matrix
5 Blended Polymeric Matrices for Enhanced Antibacterial and Antifouling Properties
6 Characterization of Membrane
7 Characterization of Membrane Biofouling
8 Model Organism for Studying Antibacterial Property of Membranes
9 Evaluation of Antifouling Property
10 Conclusions
References
11 Life Cycle Analysis of Polymeric Membrane-Based Processes
1 Introduction
2 Improving Membrane Stability
3 Utilization of Renewable Polymers
4 Consideration of Alternative Solvents
5 Reuse of Membrane Modules
6 Achieving Enhanced Separation Efficiency
7 Circular Economy and Integration Solutions
8 End-of-Life Management of Spent Membrane Modules
8.1 Waste Reduction
8.2 Reuse of Spent Membranes
8.3 Membrane Recycling
8.4 Energy Recovery
8.5 Waste Materials Requiring Landfill
9 Challenges and Outlook
10 Conclusion
References