Magnetic Micro-/Nano-Materials for Proteomics Analysis

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

'Magnetic micro-/nano-materials for proteomics analysis gives a relatively comprehensive introduction to the preparation of magnetic materials and their application in proteomics by taking some representative examples, which can provide an all-around introduction for those who are interested in this field, including senior specialists and students of the field.' [Read Full Review]Analytical and Bioanalytical ChemistryProteomics is a study which takes the existence and activities of all proteins in cells as the research object for a more in-depth understanding of the laws of life activity. Since the concept of proteome was proposed in 1995, proteomics has achieved rapid development during the past decades. As a significant part of post-genomics, proteomics has strengthened its position and also become the forefront of scientific research in this century. Magnetic nanomaterials in proteomics analysis is an interdisciplinary field combining magnetic nanomaterials science and proteomics. From the current research, magnetic nanomaterials have shown great potential in complex proteomics research.This book focuses on the application of magnetic nanomaterials in the forefront of proteomics research, and describes in details the synthetic methods, properties, principles and performance of magnetic nanomaterials in various branches of proteomics, which includes digestion studies, enrichment of low abundance peptides, as well as the analysis of phosphoprotein and glycoprotein. Past 10 years' research on magnetic materials in proteomics is integrated, and then the application of magnetic nanomaterials in proteomics analysis are stated systematically.This book can serve as reference book for teaching in the major of proteomics analysis, and also can be reference book for researchers who are studying materials for proteomics.

Author(s): Nianrong Sun, Chunhui Deng
Publisher: World Scientific Publishing
Year: 2021

Language: English
Pages: 630
City: Singapore

Contents
Chapter 1 Proteomics Analysis
1.1. Proteomics research
1.1.1. Diversity
1.1.2. Dynamic nature
1.1.3. Spatiality
1.1.4. Group characteristic
1.1.5. Technology diversity
1.1.6. Mutual complement and assistance with genomes
1.2. Proteomics research strategy
1.3. Proteomics analysis technique
1.3.1. Separation technique in traditional proteomics
1.3.1.1. Two-dimensional gel electrophoresis
1.3.1.2. High performance liquid chromatography
1.3.1.3. Two-dimensional or multi-dimensional LC
1.3.2. Biological MS
1.3.3. Enzymatic hydrolysis technology
1.3.4. Low-abundance enrichment technology in proteomics
1.3.4.1. Solvent evaporation method
1.3.4.2. Chromatographic concentration method
1.3.4.3. On-plate enrichment method
1.3.4.4. Electroelution enrichment method
1.3.4.5. Nanomaterial-based solid-phase microextraction enrichment method
1.3.5. Separation technology in PTM proteomics
1.3.5.1. Phosphoproteomics
1.3.5.2. Glycoproteomics
1.3.6. Peptidomics and peptidome research technique
1.3.6.1. Peptidome and peptidomics
1.3.6.2. Peptidome research technique
1.4. Magnetic micro-/nanomaterial for proteomics
1.4.1. Preparation of magnetic micro-/nanomaterial
1.4.2. Magnetic micro-/nanomaterial for drug del
1.4.3. Magnetic micro-/nanomaterial for rapid digestion
1.4.4. Magnetic micro-/nanomaterial for PTM proteomics
1.4.5. Magnetic micro-/nanomaterial for separation and enrichment of low-abundance protein/peptide
References
Chapter 2 Magnetic Micro-/Nanomaterial: Synthesis and Characterization
2.1. Introduction of magnetic nanomaterial
2.1.1. Magnetic nanomaterial
2.1.2. Magnetism resource of magnetic nanomaterial
2.1.3. Main magnetic characteristic of magnetic nanomaterial
2.1.3.1. Single magnetic domain structure
2.1.3.2. Superparamagnetism
2.1.3.3. Coercivity
2.1.3.4. Curie temperature
2.1.3.5. Magnetizability
2.1.3.6. Magnetic parameters of magnetic nanomaterial
2.1.4. Ferrite nanomaterial
2.1.4.1. The structure of Fe3O4
2.1.4.2. Synthetic methods of Fe3O4
2.1.5. Magnetic micro-/nanomaterial for proteomic separation and analysis
2.2. Synthesis of unmodified Fe3O4 nanoparticle
2.3. One-pot synthesis of Fe3O4 nanoparticle with functional group
2.3.1. Synthesis of amino-modified Fe3O4 nanoparticle (Fe3O4–NH2)
2.3.2. Synthesis of oleic acid-modified Fe3O4 nanoparticle (OA–Fe3O4)
2.4. Synthesis of inorganic magnetic micro-/nanomaterial with core–shell structure
2.4.1. Silica-coated magnetic core–shell material (Fe3O4@SiO2)
2.4.2. Carbonaceous polysaccharide-coated magnetic core–shell material (Fe3O4@CP)
2.4.3. Metal oxide-coated magnetic core–shell material (Fe3O4@MxOy)
2.5. Organic magnetic material with core–shell structure
2.5.1. Polydopamine-coated magnetic core–shell material (Fe3O4@PDA)
2.5.2. Polymethylacrylic acid-coated magnetic core–shell material (Fe3O4@PMAA)
2.5.3. Chitosan-coated magnetic core–shell material (Fe3O4@CS)
2.5.4. Immobilization of Con A on amino-phenylboronic acid modified magnetic microsphere (Fe3O4@APBA–sugar–Con A)
2.5.4.1. The preparation of Fe3O4@APBA-sugar–Con A
2.5.4.2. Characterization of Fe3O4@APBA–sugar–Con A microsphere
2.6. Magnetic-inorganic–organic material with core–shell structure
2.6.1. Polymethyl methacrylate-modified magnetic silica (Fe3O4@SiO2@PMMA)
2.6.2. Zwitterionic polymer-modified magnetic silica (Fe3O4@SiO2@PMSA)(poly(2-(methacryloyloxy)ethyl)dimethyl-(3-sul-fopropyl)ammonium hydroxide, PMSA)
2.6.3. Magnetic silica co-modified by maltose and PEG (Fe3O4@SiO2@PEG-maltose)
2.6.4. Magnetic silica co-modified by chitosan and hyaluronic acid (MNPs–(HA–CS)n)
2.6.5. Polydopamine-modified magnetic microsphere for immobilization of metal organic framework (Fe3O4@PDA@Zr–MOF)
2.6.6. Mercaptoacetic acid-modified magnetic microsphere for immobilization of MOF (Fe3O4@MIL–100(Fe))
2.6.7. Fe3O4@SiO2@PSV (Using 3-methacryloxypropyl trimethoxysilane, MPS, as linker)
2.6.8. Iminodiacetic acid-modified magnetic microsphere for immobilization of metal ion
2.6.8.1. Preparation of Fe3O4@SiO2@Glymo–IDA–Fe3+
2.6.8.2. Characterization of Fe3O4@SiO2@Glymo–IDA–Fe3+
2.6.9. Aminophenylboronic acid-modified magnetic silica (Fe3O4@SiO2–APBA, using Glymo as linker)
2.6.9.1. Preparation of Fe3O4@SiO2-APBA
2.6.9.2. Characterization of Fe3O4@SiO2–APBA
2.6.10. Aminophenylboronic acid-modified magnetic Au–silica microsphere (Fe3O4@SiO2@Au–APBA)
2.6.10.1. Preparation of Fe3O4@SiO2@Au–APBA
2.6.10.2. Characterization of Fe3O4@SiO2@Au–APBA
2.6.11. Mercaptophenylboronic acid-modified magnetic Au–carbon microsphere (Fe3O4@CP@Au–MPBA)
2.6.11.1. Preparation of Fe3O4@CP@Au–MPBA
2.6.11.2. Characterization of Fe3O4@CP@Au–MPBA
2.6.12. Phosphate group-modified magnetic microsphere for immobilization of Zr(IV) metal ions (Fe3O4@Phosph–Zr(IV))
2.6.12.1. Preparation of Fe3O4@Phosph–Zr(IV)
2.6.12.2. Characterization of Fe3O4@Phosph–Zr(IV)
2.6.13. Tetraazacyclododecane (DOTA)-modified magnetic silica microsphere for immobilization of rare earth ions (Fe3O4@TCPP–DOTA–M3+)
2.6.13.1. Preparation of Fe3O4@TCPP–DOTA–M3+
2.6.13.2. Characterization of Fe3O4@TCPP–DOTA–M3+
2.6.14. Glycopeptide polymer-modified magnetic microsphere (dM-MNPs)
2.6.14.1. Preparation of dM-MNPs
2.6.14.2. Characterization of dM-MNPs
2.6.15. Guanidine silane-modified magnetic silica (Fe3O4@SiO2@GDN)
2.6.15.1. Preparation of Fe3O4@SiO2@GDN
2.6.15.2. Characterization of Fe3O4@SiO2@GDN
2.6.16. Polyethyleneimine-modified magnetic silica (Fe3O4@SiO2@PEI)
2.6.16.1. Preparation of Fe3O4@SiO2@PEI
2.6.16.2. Characterization of Fe3O4@SiO2@PEI
2.6.17. Immobilization of boronic acid groups on Fe3O4@pVBC@APBA by Click chemistry
2.6.17.1. Preparation of Fe3O4@pVBC@APBA
2.6.17.2. Characterization of Fe3O4@pVBC@APBA
2.7. Magnetic mesoporous material with core–shell structure
2.7.1. Magnetic mesoporous silica microsphere with core–shell–shell structure (Fe3O4@nSiO2@mSiO2)
2.7.2. Magnetic mesoporous silica microsphere (Fe3O4@mSiO2)
2.7.3. Glucose-modified magnetic mesoporous silica microsphere (Fe3O4@mSiO2–glucose)
2.7.3.1. Preparation of Fe3O4@mSiO2–glucose
2.7.3.2. Characterization of Fe3O4@mSiO2–glucose
2.7.4. Magnetic mesoporous metal oxide microsphere (Fe3O4@mTiO2)
2.7.4.1. Preparation of Fe3O4@mTiO2
2.7.4.2. Characterization of Fe3O4@mTiO2
2.7.5. Magnetic hybrid mesoporous microsphere (Fe3O4@mTiO2@mSiO2)
2.7.5.1. Preparation of Fe3O4@mTiO2@mSiO2
2.7.5.2. Characterization of Fe3O4@mTiO2@mSiO2
2.7.6. Mesoporous rare earth oxide-coated magnetic silica microsphere (Fe3O4@SiO2@mCeO2)
2.7.6.1. Preparation of Fe3O4@SiO2@mCeO2
2.7.6.2. Characterization of Fe3O4@SiO2@mCeO2
2.7.7. Lanthanum silicate-modified magnetic microsphere based on mesoporous silica (Fe3O4@LaxSiyO5)
2.7.7.1. Preparation of Fe3O4@LaxSiyO5
2.7.7.2. Characterization of Fe3O4@LaxSiyO5
2.8. Magnetic carbon nanotube and magnetic graphene material
2.8.1. Magnetic carbon nanotube
2.8.1.1. Acidification of carbon nanotube
2.8.1.2. Co-assembly of Fe3O4 and MWCNTs
2.8.2. Magnetic graphene
2.8.2.1. Acidification of graphene
2.8.2.2. Combination of Fe3O4 and graphene
2.8.3. Ordered mesoporous silica-coated magnetic MWCNTs (MWCNTs/Fe3O4-@mSiO2)
2.8.3.1. Preparation of ordered mesoporous silica-coated magnetic MWCNTs
2.8.3.2. Characterization of calcinated MWCNTs/Fe3O4–@mSiO2
2.8.4. Double-sided magnetic mesoporous graphene (Fe3O4-graphene@mSiO2)
2.8.4.1. Preparation of Fe3O4–graphene@mSiO2
2.8.4.2. Characterization of Fe3O4–graphene@mSiO2
2.8.5. Mag GO@(Ti–Sn)O4 hybrid material (Hybrid binary metal oxide-grafted magnetic graphene)
2.8.5.1. Preparation of Mag GO@(Ti–Sn)O4
2.8.5.2. Characterization of Mag GO@(Ti–Sn)O4
2.8.6. Synthesis of Mag GO@PDA (polydopamine-coated magnetic graphene)
2.8.7. Mag GO@PDA@(Zr–Ti)O4 hybrid material (hybrid binary metal oxide grafted on dopamine-coated magnetic graphene)
2.8.7.1. Preparation of Mag GO@PDA@(Zr–Ti)O4
2.8.7.2. Characterization of Mag GO@PDA@(Zr–Ti)O4
2.8.8. GO/Fe3O4/Au/PEG (polyethylene glycol-modified magnetic graphene)
2.8.8.1. Preparation of GO/Fe3O4/Au/PEG
2.8.8.2. Characterization of GO/Fe3O4/Au/PEG
2.8.9. Fe3O4–GO@nSiO2–PAMAM–Au–maltose (magnetic graphene co-modified by maltose and polyamidoamine dendrimers)
2.8.9.1. Preparation of Fe3O4–GO@nSiO2–PAMAM–Au–maltose
2.8.9.2. Characterization of Fe3O4–GO@nSiO2–PAMAM–Au–maltose
References
Chapter 3 Enzymatic Hydrolysis Technology Based on Magnetic Micro-/Nanomaterial in Proteomics
3.1. Basic principle of protein enzymolysis based on magnetic micro-/nanomaterial
3.1.1. Protein enzymolysis based on magnetic micro-/nanomaterial
3.1.2. Commercial magnetic bead for enzyme immobilization
3.1.3. Advantage of magnetic micro-/nanomaterial for enzyme immobilization
3.1.4. Immobilization method of enzyme on magnetic micro-/nanomaterial
3.1.4.1. Covalent bonding for enzyme immobilization
3.1.4.2. Physical adsorption for enzyme immobilization
3.1.4.3. Cross-linking method for enzyme immobilization
3.1.4.4. Metal ion chelating for enzyme immobilization
3.1.4.5. Embedding method for enzyme immobilization
3.1.5. Immobilized enzyme reactor
3.2. Microwave-assisted enzymatic hydrolysis based on enzyme-immobilized magnetic material
3.2.1. Basic principle and development status
3.2.2. Synthesis of magnetic material and trypsin immobilization
3.2.2.1. Synthesis of Fe3O4–Glymo and trypsin immobilization
3.2.2.2. Synthesis of Fe3O4@SiO2–Glymo and trypsin immobilization
3.2.2.3. Synthesis of amino-magnetic nanoparticle and enzyme immobilization
3.2.3. Enzyme immobilized magnetic material for microwave-assisted enzymatic hydrolysis
3.2.3.1. Application of Fe3O4-Glymo-trypsin in microwave-assisted enzymatic hydrolysis
3.2.3.2. Application of Fe3O4@SiO2–Glymo–trypsin in microwave-assisted enzymatic hydrolysis
3.2.3.3. Application of trypsin immobilized amino-magnetic nanoparticle in microwave-assisted enzymatic hydrolysis
3.2.4. Conclusion
3.3. Chip enzymatic hydrolysis based on enzyme-immobilized magnetic material
3.3.1. Preparation and basic principle of capillary/chip enzyme reactor
3.3.1.1. Capillary/chip enzyme reactor
3.3.1.2. Common method for the preparation of capillary/chip enzyme reactor
3.3.1.3. Novel enzyme-immobilzied magnetic micro-/nanomaterial for preparation of capillary/chip enzyme reactor
3.3.2. Magnetic silica for enzyme immobilization
3.3.2.1. Synthesis of magnetic silica
3.3.2.2. Immobilization of enzyme on the surface of magnetic silica
3.3.3. Preparation of capillary/chip enzyme reactor based on enzyme-immobilized magnetic silica
3.3.4. The performance of capillary/chip enzyme reactor (copper ion chelation method for enzyme immobilization)
3.3.4.1. The performance of capillary enzyme reactor (copper ion chelation method)
3.3.4.2. The performance of chip enzyme reactor (copper ion chelation method)
3.3.4.3. The performance of chip enzyme reactor (covalent bonding method)
3.3.5. The performance of chip enzyme reactor for enzymatic hydrolysis of practical bio-sample
3.3.5.1. The performance of chip enzyme reactor (copper ion chelation method) for enzymatic hydrolysis of practical bio-sample
3.3.5.2. The performance of chip enzyme reactor (covalent bonding method) for enzymatic hydrolysis of practical bio-sample
3.3.6. Conclusion
3.4. On-plate enzymatic hydrolysis based on enzyme-immobilized magnetic material
3.4.1. Basic principle and development process
3.4.2. Preparation, characterization and enzyme immobilization of amino-magnetic microsphere
3.4.3. Exploration of on-plate enzymatic hydrolysis method based on amino-magnetic microsphere
3.4.4. Condition optimization of on-plate enzymatic hydrolysis based on amino-magnetic microsphere
3.4.4.1. Optimization of temperature
3.4.4.2. Optimization of time
3.4.5. Performance of on-plate enzymatic hydrolysis based on enzyme-immobilized amino-magnetic microsphere
3.4.6. Practical application of on-plate enzymatic hydrolysis based on enzyme-immobilized amino-magnetic microsphere
3.4.7. Conclusion
References
Chapter 4 Enrichment Technology of Low-Abundance Proteomics Based on Magnetic Micro-/Nanomaterial
4.1. Basic enrichment principle of low-abundance proteome based on magnetic micro-/nanomaterial
4.1.1. Reversed-phase magnetic nanomaterial
4.1.2. Fullerene-modified magnetic nanomaterial
4.1.3. Reversed-phase organic polymer-modified magnetic nanomaterial
4.1.4. Metal ion-immobilized magnetic nanomaterial
4.1.5. Magnetic mesoporous material for peptidomics
4.1.6. Basic operation of separating and enriching low-abundance protein/peptide by magnetic nanomaterial
4.2. Magnetic micro-/nanomaterial with alkyl chain as reversed-phase affinity ligand
4.2.1. Basic principle
4.2.2. C8-modified magnetic microsphere
4.2.2.1. Synthesis of C8-modified magnetic microsphere
4.2.2.2. Characterization of C8-modified magnetic microsphere
4.2.2.3. C8-modified magnetic microsphere for the enrichment of low-abundance peptides/proteins
4.2.2.4. C8-modified magnetic microsphere for the enrichment of peptide in practical biological sample
4.2.3. OA-modified magnetic nanoparticle for the enrichment of low-abundance peptide
4.2.3.1. OA-modified magnetic nanoparticle for the enrichment of standard peptide
4.2.3.2. OA-modified magnetic nanoparticle for the enrichment of standard protein digest
4.2.3.3. OA-modified magnetic nanoparticle for the enrichment of peptide in serum
4.2.4. Conclusion
4.3. Magnetic material with C60 as affinity ligand for the enrichment of low-abundance peptide/protein
4.3.1. Basic principle
4.3.2. Synthesis of C60-functionalized magnetic silica
4.3.2.1. Synthesis of Fe3O4@SiO2
4.3.2.2. Modification of C60 on surface of Fe3O4@SiO2
4.3.3. Characterization of C60-functionalized magnetic silica
4.3.4. C60-functionalized magnetic silica for the enrichment of low-abundance peptide
4.3.4.1. Study on loading capacity of Fe3O4@SiO2-C60 towards peptide
4.3.4.2. C60-functionalized magnetic silica for the enrichment of low-abundance standard peptide
4.3.4.3. C60-functionalized magnetic silica for the enrichment of standard protein digest
4.3.4.4. C60-functionalized magnetic silica for the enrichment of low-abundance peptide from salt-containing sample
4.3.5. C60-functionalized magnetic silica for the enrichment of low-abundance protein
4.3.6. C60-functionalized magnetic silica for the enrichment of peptide in human urine
4.3.7. Conclusion
4.4. PMMA-modified magnetic microsphere for the enrichment of low-abundance peptide
4.4.1 Basic principle
4.4.2. Synthesis and characterization of Fe3O4@SiO2@ PMMA microsphere
4.4.3. Fe3O4@SiO2@PMMA microsphere for the enrichment of low-abundance peptide/protein
4.4.3.1. Enrichment of standard peptide/protein
4.4.3.2. Enrichment of standard protein digest and investigation of salt tolerance
4.4.4. Fe3O4@SiO2@PMMA microsphere for the enrichment of peptide in protein extract from on-gel enzymatic hydrolysis
4.4.5. Conclusion
4.5. Magnetic mesoporous nanomaterial for the enrichment of endogenous peptide
4.5.1. Ordered mesoporous silica coated magnetic material for peptidomics
4.5.1.1. Development of ordered mesopore coated magnetic material
4.5.1.2. Size-exclusion effect of ordered mesopore coated magnetic material
4.5.1.3. Ordered mesopore coated magnetic material for the enrichment of peptide
4.5.1.4. Laser elution of c-MWCNTs/Fe3O4–@mSiO2 enrichment
4.5.1.5. Ordered mesopore coated magnetic material for selective enrichment of endogenous peptide in practical biological sample
4.5.2. Copper ion-immobilized magnetic mesoporous material
4.5.2.1. Basic principle
4.5.2.2. Synthesis of Fe3O4@mSiO2-Cu2+
4.5.2.3. Fe3O4@mSiO2–Cu2+ for the enrichment of low-abundance peptide
4.5.2.4. Fe3O4@mSiO2-Cu2+ for the enrichment of peptide in human serum and urine
4.5.3. C8-modified magnetic mesoporous material
4.5.3.1. Basic principle
4.5.3.2. Synthesis of C8-Fe3O4@mSiO2
4.5.3.3. Characterization of C8-Fe3O4@mSiO2
4.5.3.4. Investigation on dispersion property of C8-Fe3O4@mSiO2
4.5.3.5. C8-Fe3O4@mSiO2 for the enrichment of standard peptide
4.5.3.6. Investigation on the size-exclusion effect of C8-Fe3O4@mSiO2
4.5.3.7. C8-Fe3O4@mSiO2 for the enrichment of peptide in human serum
4.5.3.8. C8-Fe3O4@mSiO2 for the enrichment of peptide in mouse brain extract
4.5.4. Conclusion
References
Chapter 5 Phosphoproteomics Analysis Technology Based on Magnetic Micro-/Nanomaterial
5.1. Basic analysis principle of phosphoproteomics based on magnetic micro-/nanomaterial
5.1.1. IMAC-based magnetic micro-/nanomaterial
5.1.2. MOAC-based magnetic micro-/nanomaterial
5.1.3. MOF-modified magnetic micro-/nanomaterial
5.1.4 Rare earth-modified magnetic micro-/nanomaterial
5.1.5. Amino-modified magnetic micro-/nanomaterial
5.2. IMAC-based magnetic micro-/nanomaterial for separation and analysis in phosphoproteomics
5.2.1. Introduction
5.2.2. IDA for immobilization of metal ion on magnetic microsphere
5.2.2.1. IDA-modified magnetic silica for immobilization of Fe3+ (Fe3O4@SiO2@Glymo–IDA–Fe3+)
5.2.2.2. IDA-modified amino-magnetic microsphere for immobilization of different metal ions (Mn+-magnetic microsphere)
5.2.3. Phosphate group-modified magnetic microsphere for immobilization of Zr4+ (Fe3O4@Phosph–Zr4+)
5.2.3.1. Preparation of Fe3O4@Phosph–Zr 4+ microsphere
5.2.3.2. Enrichment application of Fe3O4@Phosph–Zr4+ microsphere in phosphoproteomics
5.2.4. Different methods for phosphate group modification — Phosphate group-modified magnetic microsphere for immobilization of metal ion
5.2.4.1. Polyethylene glycol as a linking agent to immobilize phosphate group (Fe3O4@SiO2@PEG–Ti4+)
5.2.4.2. Polyethylene glycol methacrylate phosphoric acid modified magnetic microsphere for immobilization of metal ion (Fe3O4@PMAA@PEGMP-Ti4+)
5.2.4.3. Adenosine-modified magnetic microsphere for immobilization of Ti4+ (Fe3O4@ATP–Ti4+)
5.2.5. Polydopamine-modified magnetic microsphere for immobilization of metal ion of Ti4+ (Fe3O4@PDA–Ti4+)
5.2.5.1. Preparation of Fe3O4@PDA–Ti4+ microsphere
5.2.5.2. Characterization of Fe3O4@PDA–Ti4+ microsphere
5.2.5.3. Enrichment application of Fe3O4@PDA–Ti4+ microsphere in phosphoproteomics
5.2.6. Immobilization of metal ion on magnetic graphene (Mag GO)
5.3. MOAC-based magnetic micro-/nanomaterial for separation and analysis in phosphoproteomics
5.3.1. Introduction
5.3.2. Carbon layer-coated magnetic microsphere for modification of metal oxide (Fe3O4@MxOy)
5.3.2.1. Preparation of Fe3O4@MxOy microsphere
5.3.2.2. Enrichment application of Fe3O4@MxOy microsphere in Phosphoproteomics
5.3.3. Mesoporous metal oxide-modified magnetic microsphere
5.3.3.1. Fe3O4@mTiO2
5.3.3.2. Fe3O4@mTiO2@mSiO2
5.3.4. Immobilization of metal oxide on magnetic graphene (Mag GO)
5.3.5. Immobilization of hybrid metal oxide on magnetic graphene
5.3.5.1. Mag GO@(Ti-Sn)O4 hybrid material
5.3.5.2. Mag GO@PDA@(Zr–Ti)O4 hybrid material
5.4. MOF-modified magnetic micro-/nanomaterial for separation and analysis in phosphoproteomics
5.4.1. Introduction
5.4.2. PDA-modified magnetic microsphere for immobilization of MOF (Fe3O4@PDA@Zr-MOF)
5.4.2.1. Preparation of Fe3O4@PDA@Zr-MOF composite
5.4.2.2. Enrichment application of Fe3O4@PDA@Zr-MOF composite in phosphoproteomics
5.4.3. Mercaptoacetic acid-modified magnetic microsphere for immobilization of MOF (Fe3O4@MIL-100(Fe))
5.4.3.1. Preparation of Fe3O4@MIL-100(Fe) composite
5.4.3.2. Enrichment application of Fe3O4@MIL-100(Fe) composite in phosphoproteomics
5.5. Rare earth-modified magnetic micro-/nanomaterial for separation and analysis in phosphoproteomics
5.5.1. Introduction
5.5.2. Cyclen (DOTA) modified magnetic silica for immobilization of rare earth ion (Fe3O4@TCPP-DOTA-M3+)
5.5.2.1. Preparation of Fe3O4@TCPP-DOTA-M3+microsphere
5.5.2.2. Enrichment application of Fe3O4@TCPP-DOTA-M3+ microsphere in phosphoproteomics
5.5.3. Mesoporous rare earth oxide-modified magnetic silica (Fe3O4@SiO2@mCeO2)
5.5.3.1. Preparation of Fe3O4@SiO2@mCeO2 microsphere
5.5.3.2. Enrichment application of Fe3O4@SiO2@mCeO2 microsphere in phosphoproteomics
5.5.4. Lanthanum silicate-modified magnetic microsphere (Fe3O4@LaxSiyO5 )
5.5.4.1. Preparation of Fe3O4@LaxSiyO5 microsphere
5.5.4.2. Enrichment application of Fe3O4@LaxSiyO5 microsphere in phosphoproteomics
5.5.5. Yttrium phosphate-modified magnetic microsphere (PA–Fe3O4@YPO4 )
5.5.5.1. Preparation of PA–Fe3O4@YPO4 microsphere
5.5.5.2. Characterization of PA–Fe3O4@YPO4 microsphere
5.5.5.3. Enrichment application of PA–Fe3O4@YPO4 microsphere in phosphoproteomics
5.6. Amino-modified magnetic micro-/nanomaterial for separation and analysis in phosphoproteomics
5.6.1. Introduction
5.6.2. Guanosilane-modified magnetic silica (Fe3O4@SiO2@GDN)
5.6.2.1. Preparation of Fe3O4@SiO2@GDN microsphere
5.6.2.2. Enrichment application of Fe3O4@SiO2@GDN microsphere in phosphoproteomics
5.6.3. Polyethyleneimine-modified magnetic silica (Fe3O4@SiO2@PEI)
5.6.3.1. Preparation of Fe3O4@SiO2@PEI microsphere
5.6.3.2. Enrichment application of Fe3O4@SiO2@PEI microsphere in phosphoproteomics
References
Chapter 6 Glycoproteomics Analysis Technology Based on Magnetic Micro-/Nanomaterial
6.1. Basic analysis principle of glycoproteomics based on magnetic micro-/nanomaterial
6.1.1. Hydrophilic functional group modified magnetic micro-/nanomaterial
6.1.2. Lectin-modified magnetic micro-/nanomaterial
6.1.3. Chelation-based magnetic micro-/nanomaterial
6.1.4. Covalent binding-based magnetic micro-/nanomaterial
6.2. Hydrophilic functional group-modified magnetic micro-/nano material for separation and analysis in glycoproteomics
6.2.1. Introduction
6.2.2. Sugar-modified magnetic microsphere
6.2.2.1. Glucose-modified magnetic mesoporous microsphere (Fe3O4@mSiO2–glucose)
6.2.2.2. Chitosan-modified magnetic microsphere (Fe3O4@CS)
6.2.3. Hydrophilic polymer modified magnetic micro-/nanomaterial
6.2.3.1. Amphoteric polymer-modified magnetic silica (Fe3O4@SiO2@PMSA) (PMSA, [2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide)
6.2.3.2. PEG-modified magnetic graphene oxide (GO/Fe3O4/Au/PEG)
6.2.4. Sugar and hydrophilic polymer co-modified magnetic micro-/nanomaterial
6.2.4.1. Maltose and PEG co-modified magnetic silica (Fe3O4@SiO2@PEG–maltose)
6.2.4.2. Maltose and PAMAM co-modified magnetic graphene oxide (Fe3O4–GO@nSiO2–PAMAM–Au–maltose)
6.2.5. Double sugar co-modified magnetic silica
6.2.6. Glycopeptide dendrimer modified magnetic microsphere (dM-MNPs)
6.2.6.1. Preparation of dM-MNPs microsphere
6.2.6.2. Enrichment application of dM-MNPs microsphere in glycoproteomics
6.3. Lectin-modified magnetic micro-/nanomaterial for separation and analysis in glycoproteomics
6.3.1. Introduction
6.3.2. Aminophenylboronic acid-magnetic microspher efor immobilization of Con A (Fe3O4@APBA–sugar–Con A)
6.3.2.1. Preparation of Fe3O4@APBA–sugar–Con A microsphere
6.3.2.2. Application of Fe3O4@APBA–sugar–Con A microsphere in glycoproteomics
6.4. Covalent bonding-based magnetic micro-/nanomaterial for separation and analysis in glycoproteomics
6.4.1. Introduction
6.4.2. Au nanoparticle for immobilization of phenylboronic acid on magnetic microsphere
6.4.2.1. Fe3O4@CP@Au–MPBA microspheres
6.4.2.2. Fe3O4@SiO2@Au–APBA microsphere
6.4.3. Silylated reagent for immobilization of boronic acid group on magnetic silica
6.4.3.1. Fe3O4@SiO2@PSV microsphere (3-(methacryloyloxy)propyltrimethoxysilane, MPS as a linker)
6.4.3.2. Fe3O4@SiO2–APBA microsphere (GLYMO as a linker)
6.4.4. Immobilization of boronic acid group on magnetic microsphere via click chemistry (Fe3O4@pVBC@APBA)
6.4.5. Hydrazine functionalized magnetic microsphere
References
Index