Macular Surgery: Current Practice and Trends

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Recent technological advances in the diagnosis of macular disorders have enhanced our understanding of these diseases. At the same time, advances in small-gauge vitrectomy instrumentation and techniques have improved the safety and efficiency of surgery, allowing macular conditions that would have otherwise resulted in blindness to be treated effectively, preserving patients’ sight. Macular surgery continues to evolve rapidly, thanks to exciting future technology trends. This book provides a detailed and up-to-date overview of the field. It begins with essential information on macular anatomy and pathophysiology, examination techniques, and surgical instrumentation. In turn, it discusses a broad range of disease processes, including macular holes, epiretinal membrane, vitreomacular traction and myopic maculopathy. The role and benefits of advanced vitrectomy techniques including submacular surgery, prosthetic vision, robotic surgery, and stem cell and gene therapy are addressed in detail. A review of perioperative care and potential complications rounds out the coverage.

Author(s): Andrew Chang, William F. Mieler, Masahito Ohji
Edition: 1
Publisher: Springer
Year: 2020

Language: English
Pages: 622

Preface
Contents
Part I: Macula Anatomy and Physiology
1: Anatomy and Histology of the Macula
1.1 Introduction
1.2 Definition of the Macula
1.3 Macular Cellular Structure
1.3.1 Fovea and Foveola
1.3.2 Parafoveal Region
1.3.3 Perifoveal region
1.4 Blood Supply of the Macula
1.4.1 Macula Blood Supply from the Retinal Circulation
1.4.2 Macular Blood Supply from the Choroidal Circulation
1.5 Vitreal Anatomy and Its Relevance to the Macular Microenvironment
1.5.1 Vitreal Anatomy and Biochemistry
1.5.2 Vitreous and Its Interface with the Retina and Macula
1.6 Summary
References
2: Macular Physiology and Its Clinical Significance
2.1 Introduction
2.2 Energy Demands of the Retina and Macula
2.2.1 High Oxygen Uptake of the Retina and Macula
2.2.2 High Energy Demands and Limited Blood Supply in the Retina and Macula
2.2.3 Relevance of Intraocular Oxygen Distribution for Retinal Energetics
2.3 Intraocular Oxygen Distribution
2.3.1 Intraretinal Oxygen Distribution
2.3.1.1 Intraretinal Oxygen Distribution in Normoxia
2.3.1.2 Intraretinal Oxygen Distributions Under Light and Dark Adapted Conditions
2.3.1.3 Intraretinal Oxygen Distribution in Graded Hyperoxia
2.3.1.4 Intraretinal Oxygen Distribution and Consumption During Retinal Artery Occlusion and Graded Hyperoxia
2.3.2 Intraretinal Oxygen Distribution in the Macula
2.3.2.1 Macular Intraretinal Oxygen Distribution in Normoxia
2.3.2.2 Macular Intraretinal Oxygen Distribution in Graded Hyperoxia
2.3.2.3 Oxygen Consumption in the Macula
2.3.3 Vitreous Oxygen Distribution
2.4 Intraocular Oxygen Distribution After Vitrectomy
2.4.1 Increased Oxygen Tension in the Mid Vitreous and Adjacent to the Lens After Vitrectomy
2.4.2 Increased Oxygen Transport by Diffusion or Convection Could Improve Macular Oxygenation
2.4.3 Molecular Transport After Vitrectomy
2.5 Summary
References
Part II: Diagnostic Modalities
3: Angiography Using Fluorescein and Indocyanine Green Dye
3.1 Introduction
3.2 Equipment for FA and ICGA
3.2.1 Flash-Based System
3.2.2 Confocal Scanning Laser Ophthalmoscopy Systems
3.3 Fluorescein Angiography (FA)
3.3.1 Basics of FA
3.3.2 Interpretation of FA
3.3.2.1 Normal Fluorescence
3.3.2.2 Hyperfluorescence in FA
3.3.2.3 Hypofluorescence in FA
3.3.3 Contraindication of FA
3.4 Indocyanine Green Angiography (ICGA)
3.4.1 Basics of ICGA
3.4.2 Interpretation of ICGA
3.4.2.1 Normal Fluorescence in ICGA
3.4.2.2 Hyperfluorescence in ICGA
3.4.2.3 Hypofluorescence in ICGA
3.4.3 Contraindication of ICGA
3.5 Applications of FA and ICGA in Macular Surgery
3.5.1 Macular Hole
3.5.2 Epiretinal Membrane/Vitreomacular Adhesion
3.5.3 Pathologic Myopia
3.5.4 Diabetic Retinopathy
3.5.5 Retinal Vascular Occlusions
3.5.6 Uveitis
3.5.7 Coats’ Disease
3.5.8 Retinal Transplantation
References
4: Optical Coherence Tomography Angiography in Macular Disorders
4.1 Introduction
4.2 Principles of OCTA
4.3 Advantages and Disadvantages of OCTA
4.4 OCTA Vessel Density
4.5 Artifacts on OCTA
4.5.1 Low Signal Strength
4.5.2 Motion Artifacts
4.5.3 Projection Artifacts
4.5.4 Masking Defects
4.5.5 Segmentation Artifacts
4.6 OCTA of the Normal Retinal Vasculature
4.7 OCTA of AMD
4.7.1 Non-Neovascular AMD
4.7.2 OCTA of the Choriocapillaris
4.7.3 Exudative AMD
4.7.3.1 Type 1 CNV
4.7.3.2 Type 2 CNV
4.7.3.3 Type 3 CNV
4.7.4 Sensitivity and Specificity
4.7.5 Use of OCTA in Management of AMD
4.7.5.1 Active or Inactive MNV
4.7.5.2 Monitoring of Treatment Efficacy
4.7.6 Limitations and Pitfalls in Diagnosing MNV on OCTA
4.8 OCTA of Polypoidal Choroidal Vasculopathy (PCV)
4.8.1 Polypoidal Lesions
4.8.2 Branching Vascular Membranes (BVNs)
4.9 OCTA of Retinal Vascular Diseases
4.9.1 Diabetic Retinopathy
4.9.2 Diabetic Macular Edema
4.9.3 Retinal Vein Occlusion
4.9.4 Retinal Artery Occlusion
4.10 OCTA in Inflammatory Conditions and Inherited Retinal Dystrophies
4.11 Conclusion
References
5: Optical Coherence Tomography of the Vitreoretinal Interface
5.1 Introduction
5.2 Posterior Vitreous Detachment
5.3 Anomalous Posterior Vitreous Detachment
5.4 Vitreomacular Adhesion
5.5 Vitreomacular Traction
5.6 Epiretinal Membrane
5.7 Full-Thickness Macular Hole
5.8 Lamellar Macular Hole
5.9 Macular Pseudohole
5.10 Conclusion
References
6: Automated Analysis and Quantification of OCT Images
6.1 Principles of Modern Image Analysis
6.1.1 Traditional Image Analysis
6.1.2 Machine Learning and Deep Learning
6.2 Targets for Automated Analysis and Quantification
6.2.1 Automated Diagnosis and Screening
6.2.2 Retinal Layers
6.2.3 Photoreceptor Changes
6.2.4 Vitreomacular Interface
6.2.5 Retinal Fluid
6.2.6 Changes of the Retinal Pigment Epithelium
6.2.7 Hyperreflective Foci
6.3 Artificial Intelligence for Personalized Healthcare
6.4 Future Perspective
References
7: Artificial Intelligence in the Assessment of Macular Disorders
7.1 Artificial Intelligence, Machine Learning, and Deep Learning
7.2 Application of AI in Macular Disorders
7.2.1 Diabetic Macular Edema
7.2.1.1 Application on Color Fundus Photographs
7.2.1.2 Application on OCT Images
7.2.2 Age-Related Macular Degeneration
7.2.2.1 Application on Color Fundus Photographs
7.2.2.2 Application on OCT Images
7.2.2.3 Application on Ultra-Wide-Field Images
7.2.3 Macular Edema in Retinal Vein Occlusion
7.2.3.1 Application on OCT Images
7.2.4 Inherited Macular Disorders
7.2.4.1 Application on OCT Images
7.2.4.2 Application on Adaptive Optics Scanning Light Ophthalmoscope (AOSLO) Images
7.3 The Potential Application of AI for Macular Surgery
7.4 Limitation of AI
7.5 Outlook
References
8: Distortion and Scotoma Assessment in Surgical Macular Diseases
8.1 Introduction
8.2 History of Macular Disease Symptomatology Documentation and Quantification
8.3 Clinical Tests to Quantify Distortion
8.3.1 Epiretinal Membrane
8.3.2 Vitreomacular Traction
8.3.3 Retinal Detachment
8.4 Clinical Tests to Quantify Scotoma
8.4.1 Epiretinal Membrane
8.4.2 Vitreomacular Traction
8.4.3 Retinal Detachment
8.5 Conclusions
References
Part III: Adjunctive Surgical Techniques
9: Trends in Microsurgical Instrumentation
9.1 Wide-Angle Viewing Systems (WAVs)
9.2 High-Speed Vitreous Cutter
9.3 Instruments for Macular Surgery
9.3.1 Finesse Sharkskin ILM forceps (Alcon) (Fig. 9.4)
9.3.2 Ultra-Peel Forceps (DORC) (Fig. 9.5)
9.3.3 Stiff DEX Forceps (Katalyst) (Fig. 9.6)
9.3.4 27ga Tano Diamond-Dusted Membrane Scraper (Synergetics) (Fig. 9.7)
9.3.5 FINESSE Flex Loop (Alcon) (Fig. 9.8)
9.4 Synergetics™ 27 ga Oshima Vivid Chandelier
9.5 Nano Cannula 25G/48G
10: Staining Techniques of Internal Limiting Membrane and Vitreous During Vitreoretinal Surgery
10.1 Introduction
10.2 Biochemical Pharmacology
10.3 Light Source and Vital Dyes
10.4 Digital Filters in 3-D Visualization System
10.5 Dye Injection Techniques
10.6 Dyes Common Used in Clinical Practices
10.6.1 Triamcinolone Acetonide
10.6.2 Trypan Blue
10.6.3 Brilliant Blue
10.6.4 Bromophenol Blue
10.6.5 Patent Blue
10.6.6 Indocyanine Green and Infracyanine Green
10.6.7 Sodium Fluorescein
10.6.8 Toxicity and Complications
10.7 Summary and Future Considerations
References
11: Viewing Systems in Vitreoretinal Surgery
11.1 Introduction
11.1.1 Naked Eye (Gross Examination) and Microscope Only
11.1.2 Direct Contact Lens
11.1.3 CWF Lens System
11.1.4 Noncontact Wide-Angle Lens
11.2 Intraoperative Real-Time OCT
11.3 Heads Up
References
12: Intraoperative OCT in Macular Surgery
12.1 Introduction
12.1.1 Microscope-Integrated OCT
12.1.2 Procedures
12.1.3 Indications for iOCT
12.2 Conclusion
References
13: Heads-up Microscope Systems in Vitreoretinal Surgery
13.1 Synopsis
13.2 Heads-Up Surgical Displays
13.3 Digitalisation of the Surgical Display
13.4 Commercially Available Digital Heads-up Systems for Vitreoretinal Surgery
13.5 Limitations
13.6 The Future
References
14: Enzymatic Vitreolysis
14.1 Introduction
14.2 Normal Anatomy of the Vitreomacular Interface
14.3 Epidemiology of Vitreoretinal Disorders
14.4 The Road to Ocriplasmin
14.5 Clinical Trials
14.6 Identifying the Ideal Candidate for Enzymatic Vitreolysis
14.7 Side Effects of Ocriplasmin
14.8 Cost-Effectiveness Analysis
14.9 Summary
References
Part IV: Epiretinal Membrane and Macular Hole
15: Epiretinal Membrane Management
15.1 Introduction
15.1.1 Types of ERM
15.1.2 Grades of ERM
15.1.3 Indications for Surgery
15.1.4 Surgical Procedure
15.1.5 Post-op Recovery
15.1.6 Complications
15.1.6.1 Other
15.1.6.2 Endophthalmitis
Differential Diagnosis of ERM
15.1.7 Prognosticating Factors
15.2 Recent Advances
15.2.1 Heads-Up Display
15.2.2 Intraoperative OCT
References
16: Structure and Function in Epiretinal Membrane Surgery
16.1 Background
16.2 Preoperative Evaluation
16.2.1 Natural History and Symptom Progression
16.2.2 Clinical Examination
16.2.2.1 Structural and Functional Assessment of the Macula
Assessing Structure
Assessing Function
16.2.3 Microperimetric Strategies in Evaluation of ERM
16.2.3.1 Fixation Analysis
16.2.3.2 Sensitivity Analysis
16.3 Surgical Considerations
16.3.1 Surgery in Patients with Good Preoperative Visual Acuity
16.3.1.1 Functional Indicators
16.3.1.2 Structural Indicators
16.3.2 Internal Limiting Membrane (ILM) Peeling During ERM Removal
16.4 Conclusion
16.4.1 Implications for Practice
16.4.2 Implications for Further Research
References
17: Lamellar Macular Hole: Ultrastructural Analysis, Surgical Outcomes, and Visual Prognosis
17.1 Introduction
17.1.1 MPH Versus LMH Morphological Features
17.1.2 Role of ERM in MPH and LMH Formation
17.1.3 Types of ERM
17.1.4 MPH Versus LMH Morphometric Features
17.2 Association with Myopia
17.3 Prognosis
17.4 Surgery
17.5 Other Risks for FTMH
17.6 Association with Ocriplasmin
References
18: Macular Hole Surgery: Current Approaches and Trends
18.1 Introduction
18.2 Stages
18.3 Epidemiology
18.4 Clinical Presentation
18.5 Investigation
18.6 Differential Diagnosis
18.6.1 Lamellar Macular Hole
18.6.2 Pseudohole
18.7 Trend of Treatment: Pars Plana Vitrectomy and Internal Limiting Membrane Flap
18.8 Conclusion
References
19: Inverted Internal Limiting Membrane Flap for Full-Thickness Macular Hole
19.1 Introduction
19.2 Mechanism of Action
19.3 Surgical Approach
19.3.1 Modifications of the Original Technique
19.3.1.1 Visualization
19.3.1.2 Peeling
19.3.1.3 Flap Positioning and Tamponades
19.3.1.4 Patient Positioning
19.3.2 In Summary
19.4 Indications
19.4.1 Large Macular Holes
19.4.2 Myopic Macular Hole with and without Retinal Detachment
19.4.3 Uveitis
19.4.4 Diabetic Macular Holes
19.4.5 Traumatic Macular Hole
19.4.6 Age-Related Macular Degeneration and Macular Hole
19.4.7 Macular Hole Persistent After Retinal Detachment Surgeries
19.4.8 Various Other Indications
19.5 Repeated Macular Hole Surgery after Inverted ILM Flap Techniques
19.6 Repeated Macular Hole Surgery After Traditional ILM Peeling
19.7 Inverted ILM Flap for Optic Pit Maculopathy
19.8 Foveal Microstructure
19.9 Conclusion
References
20: Management of Macular Hole Retinal Detachment
20.1 Introduction
20.2 Surgical Techniques
20.2.1 Macular Buckling
20.2.2 Vitrectomy
20.2.3 Removal of Cortical Vitreous and ERM
20.2.4 ILM Peeling
20.2.5 Macular Plug
20.2.6 Dyes
20.3 Complications
20.4 Conclusions
References
Part V: Myopic Maculopathy
21: Epidemiology of Myopic and Vitreomaculopathies
21.1 Myopia
21.1.1 Epidemiology and Economic Burden of Myopia in Different Populations
21.2 Myopic Vitreomaculopathies
21.2.1 Posterior Vitreous Detachment
21.2.2 Epiretinal Membranes
21.2.3 Full-Thickness Macular Holes
21.2.4 Macular Hole Retinal Detachment
21.2.5 Lamellar Macular Holes
21.2.6 Myopic Foveoschisis
21.2.7 Paravascular Abnormalities
21.3 Conclusions
References
22: Pathophysiology of Myopic Foveoschisis
22.1 Introduction
22.2 Pathogenesis
22.3 Natural Course
22.4 Clinical Manifestations and Diagnosis
22.5 Optical Coherence Tomographic Appearance
22.6 Fundus Autofluorescence
22.7 Conclusions
References
23: Guidelines for the Treatment of Myopic Traction Maculopathy
23.1 Introduction
23.1.1 Pathologic Myopia
23.2 Myopic Traction Maculopathy
23.2.1 Definition
23.2.2 Epidemiology
23.2.3 Pathogenesis: The Game of Forces
23.2.4 Clinical Manifestations and Diagnosis
23.2.5 Management
23.2.6 Surgery
23.2.7 Guidelines to MTM Treatment
23.2.8 Role of ILM Peeling
23.3 The Macular Buckle
23.3.1 Preoperative Assessment of the Eye and Patient
23.3.2 Anesthesia
23.3.3 Types of Buckle Available
23.3.4 Postoperative Care
23.3.5 Complications of the Macular Buckle and Their Management
23.3.6 Effect of Macular Buckle over Time and Effect of Buckle Removal
23.3.7 Evolution of the Surgical Technique
23.4 Personal Conclusions
Glossary and Terminology
References
24: Surgery for Myopic Traction Maculopathy
24.1 Introduction
24.1.1 Surgical Indications
24.2 Surgical Procedure
24.2.1 Vitreous Separation
24.2.2 Internal Limiting Membrane Peeling
24.2.3 Fovea-Sparing Internal Limiting Membrane Peeling
24.2.4 Tamponade
24.2.5 Surgical Prognosis After Vitrectomy with ILM Peeling
24.2.6 Standard ILM Peeling Versus Fovea-Sparing ILM Peeling
24.2.7 Postoperative Complications
References
25: Practical Tips in Surgery for Myopic Maculopathy
25.1 Introduction
25.2 General Issues on Vitrectomy
25.2.1 Anaesthesia in Long Axial Length
25.2.2 Instrumentation in Long Axial Length
25.2.3 Posterior Vitreous Detachment Induction
25.2.4 Reduced Contrast for Posterior Pole or Macular-Related Surgery
25.2.5 Avoid Dye Contact with the RPE and Related Toxic Effects
25.2.6 Viewing System During Membrane Peeling
25.3 Pathology-Based Discussion
25.3.1 Rhegmatogenous Retinal Detachment
25.3.2 Myopic Foveoschisis
25.3.3 Full-Thickness MHs in Highly Myopic Eyes
25.3.4 Use of Intra-ocular Tamponade
25.3.5 Surgical Complications Related to Leaking Sclerotomies
25.3.6 Other Complications
25.4 Conclusion
References
Part VI: Maculopathy in Other Diseases
26: The Role of Pars Plana Vitrectomy (PPV) for the Treatment of Diabetic Macular Edema (DME)
26.1 Pathophysiology
26.2 Literature Review
26.2.1 Eyes with DME and VMT
26.2.2 Eyes with DME Without VMT
26.2.2.1 Efficacy of Primary PPV in Treatment-Naïve Eyes
26.2.2.2 Efficacy of PPV for Non-tractional Refractory DME
26.2.2.3 PPV vs. Laser in Non-tractional Refractory DME
26.2.2.4 PPV with vs. Without ILM Peeling
26.2.2.5 PPV vs. Intravitreal Steroid in Non-tractional DME
26.2.2.6 PPV vs. Intravitreal Anti-VEGF in Refractory Non-tractional DME
26.2.3 Predictors of Visual Outcome and Durability
26.2.4 Surgical Considerations
References
Background
Meta-analyses and Reviews
Large Series
Smaller Series
Other
27: Retinal Endovascular Surgery
27.1 Introduction
27.2 Development of Endovascular Surgery with a Microneedle
27.3 Surgical Indication of Endovascular Surgical Procedure
27.4 Surgical Procedure
27.4.1 Surgical Results
27.4.2 Complications
27.5 Recent Development of Cannulation for CRAO
27.5.1 Results
27.5.2 Complications
27.6 Discussion
References
28: Surgical Management of Optic Disc Pit Maculopathy
28.1 Introduction
28.2 Pathogenesis
28.3 Diagnosis and Investigations
28.4 Treatment
28.4.1 Laser
28.4.2 Laser and Gas
28.4.3 Vitrectomy with or Without ILM Peeling
28.4.4 Fibrin Sealants
28.4.5 Vitrectomy with Inner Retinal Fenestration
28.4.6 Macular Buckling
28.5 Summary
28.6 Illustrative Cases
28.6.1 Case 1
28.6.2 Case 2
References
29: Pediatric Macular Surgery
29.1 Introduction
29.2 Surgical Indications and Techniques
29.2.1 Traumatic Macular Holes
29.2.2 Combined Hamartomas of the Retina and RPE
29.2.3 Macular Surgery for Choroidal Neovascularization
29.2.4 Posterior Hyaloid Contracture Syndrome
29.2.5 Macula-Involving Epiretinal Membranes
29.3 Complications
References
Part VII: Latest Surgical Advances
30: RPE and Choroid Transplantation in Macular Degeneration
30.1 Introduction
30.2 Background History
30.3 Graft Perfusion
30.4 Graft Survival
30.5 Indications to Surgery
30.6 Surgical Technique in Details
30.7 What Do We Know After 10 Years of Surgery?
30.8 Functional Parameters
30.8.1 Distance Vision and Reading Ability
30.8.2 Microperimetry
30.9 Morphological Parameters
30.9.1 Optical Coherence Tomography
30.9.2 Fundus Autofluorescence
30.9.3 Color Fundus Photography
30.9.4 Fluorescein Angiography and Indocyanine Green Angiography
30.10 Anatomical Results
30.10.1 Biomicroscopy and Color Fundus Photograph
30.10.2 Blue-Light Fundus Autofluorescence
30.10.3 Optical Coherence Tomography
30.10.4 Fluorescein and Indocyanine Angiography
30.11 Functional Results
30.11.1 Visual Outcomes
30.11.2 Microperimetry
30.12 Complications
30.13 Discussion
References
31: Stem Cell-Derived Retinal Cells for Transplantation
31.1 Introduction
31.2 Sources of Stem Cells
31.2.1 Sources of RPE Cells
31.2.1.1 Mammalian Embryonic Stem Cell-Derived RPE
31.2.1.2 Induced Pluripotent Stem Cell-Derived RPE
31.2.2 Stem Cell-Derived Photoreceptors
31.3 Transplantation Approaches of Stem Cell-Derived Retinal Cells
31.4 Efficacy of Stem Cell-Derived Retinal Cell Transplantation
31.4.1 Efficacy of RPE Transplantation
31.4.2 Efficacy of Whole-Retina Transplants
31.4.3 Ocata Therapeutics Trial Using Subretinal hESC-RPE Suspensions
31.4.4 London Project to Cure Blindness-Subretinal hESC-RPE Sheet Implantation
31.4.5 RIKEN-Subretinal iPSC-RPE Sheet Implantation
31.4.6 Regenerative Patch Technologies (RPT) Subretinal hESC-RPE Sheet Implantation
31.5 Safety Studies for Stem Cell-Derived Retinal Cell Transplantation
31.6 Conclusion
References
32: Submacular Surgery for Submacular Hemorrhage
32.1 Introduction
32.2 Surgical Removal of Blood and CNV
32.3 Pneumatic Displacement with/Without Intravitreal tPA Injection Without Vitrectomy
32.4 Vitrectomy with Subretinal Injection of tPA and Pneumatic Displacement
32.5 Vitrectomy for Massive SRH (Internal Drainage vs. External Drainage)
32.5.1 Vitrectomy with Internal Drainage Therapy
32.5.2 Vitrectomy with External Drainage Therapy
32.6 Anti-vascular Endothelial Growth Factor (VEGF) Agent
32.7 Conclusion
References
33: Development and Experimental Basis for the Future of Prosthetic Vision
33.1 Introduction
33.2 History of Device Development
33.3 Target Patient Population for Retinal Prostheses
33.4 Target Patient Population for Optic Nerve, Lateral Geniculate or Cortical Prostheses
33.5 Functional Anatomy and Theoretical Background of Prosthetic Vision
33.6 Epiretinal Vision Prostheses
33.7 Subretinal Vision Prostheses
33.8 Suprachoroidal and Intrascleral Vision Prostheses
33.9 Optic Nerve and Lateral Geniculate Nucleus
33.10 The Cortical Approach
33.11 Patient-Centred Outcomes
33.12 Future Directions
33.12.1 Current Steering
33.12.2 Vision Processing
33.12.3 Stimulation Strategies
33.13 Conclusion
References
34: Argus II Prosthetic Vision
34.1 Introduction
34.2 Biomedical Engineering Aspects of Visual Prostheses
34.2.1 Background
34.2.1.1 Visual Prosthesis
34.2.1.2 Development of the Argus II System
34.2.2 Biomedical Considerations
34.2.2.1 Visual Acuity
34.2.2.2 Visual Field
34.2.2.3 Phosphene Fading and Streaking
34.2.2.4 Stimulation Safety
34.3 Clinical Aspects of Argus II Prosthesis
34.3.1 Indication of the Argus II Retinal Prosthesis
34.3.2 Implantation Surgery
34.3.2.1 Patient Selection
34.3.2.2 Surgical Procedures
34.3.2.3 Device Programming and Fitting Activation
34.3.2.4 Rehabilitation
34.3.3 Clinical Outcomes
34.3.3.1 Safety
34.3.3.2 Visual Outcome
34.3.3.3 Functional Vision
34.3.3.4 Anatomic Change
34.4 Future Development and Perspectives
References
35: Retinal Gene Therapy
35.1 Introduction
35.2 A Brief History of Gene Therapy
35.3 Phenotype, Genotype, Inheritance, and the Effect on Treatment Strategy
35.3.1 Autosomal Dominant Inheritance
35.3.2 Autosomal Recessive Inheritance
35.3.3 X-Linked Inheritance
35.3.4 Mitochondrial Inheritance
35.4 Viral Vectors for Gene Delivery
35.4.1 Expression Cassettes
35.4.2 Choice of Viral Vector
35.4.3 Vector Manufacturing and Quality Control
35.5 Treatment Strategies: Gene Specific
35.5.1 Replacement
35.5.2 Silencing
35.6 Treatment Strategies: Gene Independent
35.6.1 Trophic Factors
35.6.2 Anti-neovascularisation Factors
35.6.3 Optogenetics
35.6.4 Genome Surgery
35.7 Intraocular Delivery
35.7.1 Subretinal Injection
35.7.2 Intravitreal
35.8 Post-operative Care
35.9 Overcoming Amblyopia in Late Treatment of Congenital/Early Blindness
35.10 Clinical Trials
35.10.1 RPE Diseases
35.10.1.1 Case Study: Luxturna and Leber Congenital Amaurosis
35.10.2 Choroideraemia
35.10.3 Autosomal Recessive RP
35.11 Photoreceptor Disorders
35.11.1 Rod Monochromacy/Achromatopsia
35.11.2 GUCY2D-Associated Leber Congenital Amaurosis
35.11.3 X-Linked RP
35.11.4 Usher’s Syndrome
35.11.5 Stargardt’s Disease
35.12 Inner Retinal Diseases
35.12.1 X-Linked Retinoschisis
35.13 Multigene Disorders
35.13.1 Age-Related Macular Degeneration
35.14 Summary of Current Clinical Trials in the Retina
35.15 Conclusions and Future Directions
References
Part VIII: Combined Ophthalmic Surgical Techniques
36: Combined Cataract and Vitrectomy Surgery
36.1 Introduction
36.2 Indications for Phacovitrectomy
36.3 Contraindications for Phacovitrectomy
36.4 Phacovitrectomy Technique
36.4.1 Incision Construction for Phacoemulsification
36.4.2 Phacoemulsification Procedure
36.4.3 IOL Insertion
36.4.4 Closure of Phacoemulsification Incisions
36.4.5 Placement of Pars Plana Vitrectomy Ports
36.4.6 Pars Plana Vitrectomy
36.4.7 Completion of Combined Surgery
36.5 Biometry and IOL Selection
36.6 Intraoperative Complications Specific to Phacovitrectomy
36.6.1 Pupil Miosis During Surgery
36.6.2 Loss of Integrity of the Posterior Capsule During Surgery
36.6.3 Intraoperative Hyphaema
36.7 Postoperative Complications Specific to Phacovitrectomy
36.7.1 IOL Displacement and Pupil Capture
36.7.2 Posterior Synechiae
36.8 Alternative Approaches
36.8.1 Vitrectomy First Followed by Sequential Phacoemulsification Surgery
36.8.2 Cataract Surgery First Followed by Vitrectomy
36.8.3 Primary Phacoemulsification or Lensectomy Without Lens Implantation During Vitrectomy
36.9 Evidence Review: Safety and Efficacy of Combined Phacoemulsification and Vitrectomy
36.10 Transition to Phacovitrectomy
36.11 Health Economics of Phacovitrectomy Versus Staged Surgery
References
37: Choice and Implications of Intraocular Lens in Retinal Surgery
37.1 Introduction
37.2 Part A
37.2.1 The “Ideal” Intraocular Lens
37.3 Part B
37.3.1 Factors to Consider for IOL Selection Preceding Vitreoretinal Surgery
37.4 Intraocular Lens Opacification After Gas Insertion
37.4.1 Materials to Avoid
37.4.2 Materials of Choice
37.5 Should Intraocular Lenses Block Blue Light?
37.6 Do Some Intraocular Lenses Allow a Better View of the Peripheral Retina?
37.7 Are Some Intraocular Lenses More Prone to Causing Capsule Phimosis and Eventual Subluxation?
37.8 Dysphotopsias and Glistenings
37.9 Final Thoughts and Recommendations
References
38: Penetrating Keratoplasty and Macular Surgery
38.1 Introduction
38.2 Indications for PKP/PPV
38.3 Surgical Approach
38.4 Risks and Benefits
38.5 Outcomes
38.6 Summary
References
39: Keratoprosthesis and Retinal Surgery
39.1 Introduction
39.2 Indications for Keratoprosthesis
39.3 Design of the KPro Device
39.4 Postsurgical Prophylactic Treatments
39.5 Surgical Outcomes
39.6 Postoperative Complications (Risks and Benefits)
39.6.1 Retroprosthetic Membrane (RPM) Formation
39.6.2 Retinal Detachment
39.6.3 Endophthalmitis
39.6.4 Sterile Vitritis
39.6.5 Epiretinal Membrane (ERM)
39.7 Other Types of Keratoprosthesis
39.7.1 Osteo-Odonto Keratoprosthesis (OOKP)
39.7.2 Type II Boston Keratoprosthesis
39.8 Other Considerations and Prophylactic Measures
39.9 Summary
References
40: Robotic Retinal Surgery
40.1 Introduction
40.2 Advantages
40.3 Surgical Approaches
40.3.1 Robot-Assisted Tool
40.3.2 Cooperative Robotic System
40.3.3 Remote Operator
40.3.3.1 da Vinci Surgical System
40.3.3.2 PRECEYES Surgical System
40.3.3.3 Intraocular Robotic Interventional Surgical System (IRISS)
40.4 Indications
40.5 Limitations
40.6 Future Developments
40.7 Summary
References
Part IX: Ancillary Resources for Retinal Surgery
41: New Ocular Drug Delivery Systems
41.1 Introduction
41.2 Drug Delivery Systems for Small-Molecule Drugs
41.2.1 Ocular Implants
41.2.2 Injectable Micro/Nanoparticles
41.2.3 Injectable Hydrogels
41.2.4 Ocular Inserts
41.2.5 Microneedles
41.3 DDS for Macromolecular Biological Drugs
41.3.1 Ocular Implants
41.3.2 Injectable Micro/Nanoparticles
41.3.3 Injectable Hydrogels
41.3.4 Composite DDSs
41.4 Conclusions
References
42: Anaesthesia for Retinal Surgery
42.1 Introduction
42.2 Preoperative Assessment and Patient Preparation
42.3 Patient Counselling by Anaesthesiologists Before Vitreoretinal Surgery
42.4 Regional Anaesthesia
42.5 Monitoring
42.6 Sedation
42.7 General Anaesthesia
42.8 Fasting
42.9 Post-operative Management
Further Reading
43: Registries in Macular Surgery
43.1 Introduction
43.2 Aspects of a Registry
43.3 Case Example: The Australian and New Zealand Society of Retinal Specialists (ANZSRS) Macular Hole Registry
43.3.1 Future Plans and Challenges
References