Luminescent Thermometry: Applications and Uses

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This book is a detailed, state-of-the-art account of the applications and uses of luminescence thermometry. It covers a wide range of fields, including biomedicine, biology, and catalysis. The book also explains the luminescence thermometric parameters used to sense temperature via luminescence with different materials, analyzing the different strategies used to improve thermal sensitivity and temperature resolution.


The readers of this book are any researcher interested in the field, because of its topical coverage, as well as bachelor and graduate students, as an introduction to this novel field. The book ends with a general critical analysis of the results presented, where the editors discuss about the challenges and opportunities in the development of these highly sensitive new class of thermometers.

Author(s): Joan Josep Carvajal Martí, Maria Cinta Pujol Baiges
Publisher: Springer
Year: 2023

Language: English
Pages: 401
City: Cham

Contents
Introduction to Luminescence Thermometry
1 What is Luminescence Thermometry?
2 Luminescence
3 Methods Used in Luminescence Thermometry
3.1 Time-Integrated Methods
3.2 Time-Resolved Methods
3.3 Other Luminescence Thermometry Methods
4 Analysis of the Performance of Luminescent Thermometers
4.1 Thermal Sensitivity
4.2 Temperature Resolution
4.3 Spatial and Temporal Resolutions
4.4 Repeatability and Reproducibility
4.5 Temperature Operation Range of a Luminescent Thermometer
5 Calibration of a Luminescent Thermometer
6 Materials in Luminescence Thermometry
6.1 Lanthanide-Doped Luminescent Thermometers
6.2 Metal–Organic Frameworks (MOFS)
6.3 Quantum Dots as Luminescent Thermometers
6.4 Organic Dyes
6.5 Luminescent Thermometers Based on Polymers
6.6 Transition Metal-Doped Nanoparticles
6.7 Metal Nanoparticles
6.8 Carbon-Based Materials: Nanodiamonds and Carbon Dots
6.9 Biomaterials
7 Conclusions
References
New Strategies to Improve Thermal Sensitivity and Temperature Resolution in Lanthanide-Doped Luminescent Thermometers
1 Introduction
2 Multilevel Thermal Coupling
3 Excited State Absorption Based Luminescent Thermometers
4 Sensitization of Ln3+ by the Transition Metal Ions
5 Negative Expansion Coefficient
6 Structural First Order Phase Transition Derived Luminescent Thermometers
7 Conclusions and Perspectives
References
An Overview of Luminescent Primary Thermometers
1 Introduction
2 Non-luminescent Primary Thermometers
2.1 Optical
2.2 Acoustic Gas Thermometers
2.3 Electric Thermometers
3 Performance of Luminescent Thermometers
4 Luminescent Primary Thermometers
4.1 Thermometric Parameters Based on Emission Features
4.2 Thermometric Parameters Based on Excitation Features
4.3 Thermometric Parameters Based on Excitation and Emission Features
5 Conclusions and Perspectives
References
Luminescence Thermometry in Heavily Doped Lanthanide Nanoparticles
1 The Fundamental Principle of Lanthanide Ions Doped Luminescent Thermometers
2 Bright Luminescence Intensity of Lanthanide Ions Doped Nanoparticles Induced by Heavily Doping
2.1 Core–Shell Structure
2.2 High Power Excitation
2.3 High Temperature Treatment
2.4 Effects of Heavily Doping on the Radiative Transition Rates
3 Lanthanide Ions Heavily Doped Nanothermometers
3.1 Thermally-Coupled-Levels Nanothermometers
3.2 Non-thermally-Coupled Nanothermometers
3.3 Lifetime-Based Nanothermometers
4 Effects of Heavily Doping on the Lanthanide Ions-Based Nanothermometry
4.1 Effects of Heavily Doping on the Thermal Sensitivities
4.2 Laser Heating in Lanthanide Ions Heavily Doped Nanoparticles
4.3 Self-Monitored Photothermal Therapy Using Lanthanide Ions Heavily Doped Nanoparticles
References
Metal–Organic Frameworks for Luminescence Thermometry
1 Introduction
1.1 Metal–Organic Frameworks: History, Synthesis and Applications
1.2 Ratiometric Thermometry in Metal–Organic Frameworks
2 Various Strategies to Develop MOFs Luminescent Thermometers
2.1 Eu-Tb Mixed Metal–Organic Frameworks
2.2 Nd-Yb Mixed Metal–Organic Frameworks
2.3 Eu3+-Based Metal–Organic Frameworks
2.4 Others Metals
2.5 Host–Guest Molecule as Second Emitter
3 Conclusion and Perspectives
References
Luminescent Nanothermometers Operating Within Biological Windows
1 Biological Windows
2 Luminescent Nanothermometers Within Biological Windows
3 Performance of Luminescent Nanothermometers
4 Thermometers Operating in the I-BW
4.1 Nanodiamonds
4.2 Fluorescent Gold Nanoclusters
4.3 Quantum Dots
4.4 Carbon Quantum Dots
4.5 Transition Metal Doped Materials
4.6 Lanthanide Doped Materials
4.7 Mixed Luminescent Materials
5 Thermometers Operating in the Second Biological Window
5.1 Quantum Dots
5.2 Transition Metal Doped Materials
5.3 Lanthanide Doped Materials
6 Thermometers Operating in the Third Biological Window
6.1 Er3+
6.2 Ho3+, Tm3+
7 Applications of Thermometers Operating Within the Biological Windows
8 Conclusions
References
Luminescence Thermometry for in vivo Applications
1 Introduction
2 Semitransparent Organisms
3 Insect Models
4 Murine Models
4.1 Control of Photothermal Therapy
4.2 Control of Magnetic Hyperthermia
4.3 Study and Diagnosis of Tissues
5 Conclusion
References
Luminescence Lifetime Nanothermometry for Accurate Temperature Measurements In Vivo
1 Temperature Detection
2 Luminescence Lifetime Thermometry
2.1 The Advantages of Luminescence Lifetime Thermometry
2.2 Performance Evaluation Index of Luminescence Lifetime Thermometers
2.3 Luminescence Lifetime Imaging
3 Luminescence Lifetime Thermometry Applied In Vivo
3.1 Luminescence Lifetime Thermometry Using Carbon Dots
3.2 Luminescence Lifetime Thermometry Using Long-Lived Luminescent Nanocapsule
3.3 Luminescence Lifetime Thermometry Using Rare-Earth-Doped Nanoparticles
4 The Development Prospect of Luminescence Lifetime Thermometry
References
Contactless Luminescence Nanothermometry in the Brain
1 Introduction
2 Brain Temperature
2.1 Brain Temperature Distribution and Fluctuations
2.2 Thermal Modulation of Neural Activity
2.3 Techniques to Study Brain Temperature
3 NIR-II Luminescence Thermometry of the Brain
3.1 Light-Tissue Interaction
3.2 Ag2S Nanoparticles in Brain Thermometry
4 Limitations and Challenges
4.1 Measurement Type and Accuracy
4.2 Delivering Nanoparticles to the Brain
5 Conclusion and Future Perspectives
References
Optical Trapping of Luminescent Nanothermometers
1 Introduction
2 Fundamentals of Optical Trapping
3 How the Field Started
4 Optimization of the Optical Trapping of Luminescent Nanothermometers
5 Desing of the Experimental Setup
5.1 The Optical Trap
5.2 Imaging and Nanoparticle Detection
6 Luminescence Thermometry with Optically Trapped Dielectric Nanoparticles
6.1 Optical Trapping of Luminescent Nanothermometers
6.2 Spinning of Dielectric Nanoparticles for Temperature Sensing
7 Thermometry with Optically Trapped Metal Nanoparticles
7.1 Optical Trapping of Gold Nanoparticles
7.2 Spinning of Metal Nanoparticles for Temperature Sensing
7.3 Dark Field Spectroscopy for Temperature Sensing
7.4 Anti-Stokes Spectroscopy for Temperature Sensing
8 Perspectives
References
Critical Analysis of the Recent Advances, Applications and Uses on Luminescence Thermometry
1 Introduction
2 Novel Approaches in Luminescence Thermometry
2.1 Luminescent Primary Thermometers
2.2 Multiparametric Approach
2.3 Luminescence Nanothermometry Below the Diffraction Limit
3 Engineering Novel Materials
3.1 Heavily Doped Lanthanide Nanoparticles
3.2 Metal–Organic Frameworks for Luminescence Thermometry
3.3 Persistent Luminescence Materials
4 New Strategies to Improve Thermal Sensitivity and Temperature Resolution in Luminescent Thermometers
4.1 Optical Trapping of Luminescent Nanothermometers
4.2 Influence of the Pumping Regime on the Temperature Resolution for Luminescence Thermometry
4.3 Impact of Noise and Background on Temperature Uncertainty in Luminescence Thermometry
4.4 Novel Approaches to Achieve Better Thermal Sensitivities
5 Novel Applications
5.1 Biological Applications for Luminescence Thermometry
5.2 Contactless Luminescence Nanothermometry in the Brain
5.3 Benefits of Lifetime-Based Luminescence Thermometry for Biological Applications
5.4 Luminescence Thermometry for the Internet of Things
5.5 Self-assessed Photothermal Therapy
5.6 Luminescence Thermometry in Engineering Applications
6 Final Reflections: Current Limitations of Luminescence Thermometry and Future Challenges
6.1 Current Limitations
6.2 Future Challenges
References