Low-Energy Ion Irradiation of Materials: Fundamentals and Application

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This book provides a comprehensive introduction to all aspects of low-energy ion–solid interaction from basic principles to advanced applications in materials science. It features a balanced and insightful approach to the fundamentals of the low-energy ion–solid surface interaction, focusing on relevant topics such as interaction potentials, kinetics of binary collisions, ion range, radiation damages, and sputtering. Additionally, the book incorporates key updates reflecting the latest relevant results of modern research on topics such as topography evolution and thin-film deposition under ion bombardment, ion beam figuring and smoothing, generation of nanostructures, and ion beam-controlled glancing angle deposition. Filling a gap of almost 20 years of relevant research activity, this book offers a wealth of information and up-to-date results for graduate students, academic researchers, and industrial scientists working in these areas.

Author(s): Bernd Rauschenbach
Series: Springer Series in Materials Science, 324
Publisher: Springer
Year: 2022

Language: English
Pages: 760
City: Cham

Preface
Contents
Abbreviations
Physical Constants
Conversions
1 Introduction
References
Part I Fundamentals
2 Collision Processes
2.1 Interaction Potentials
2.1.1 Repulsive Potentials
2.1.2 Attractive Potentials
2.2 Collisions Between Ions and Atoms
2.2.1 Kinematic of Binary Elastic Collisions
2.2.2 Dynamics of the Binary Elastic Collisions
2.2.3 Scattering Cross-Section
2.2.4 Energy-Transfer Cross-Section
2.2.5 Simplified Version of the Differential Scattering Cross-Section
2.3 List of Symbols
References
3 Energy Loss Processes and Ion Range
3.1 Nuclear Energy Loss
3.1.1 Nuclear Stopping Power Using the Thomas–Fermi Screening Function
3.1.2 Empirical Relations of the Normalized Nuclear Stopping Power Function
3.1.3 Nuclear Stopping Power Based on the Universal Screening Function
3.2 Electronic Stopping Power for Low Incident Energies
3.3 Stopping Power for Compounds
3.4 Ion Range
3.5 Range Distribution
3.5.1 Modified Range Distribution by Sputtering and Annealing
3.5.2 Lateral Distribution
3.6 Simulation of Ion Range and Range Distribution
3.6.1 Molecular Dynamic Simulations
3.6.2 Monte Carlo Simulations
3.7 List of Symbols
References
4 Ion Beam-Induced Damages
4.1 Threshold Displacement Energy
4.2 Primary Knock-On Atom
4.2.1 The Kinchin–Pease Model
4.2.2 The Norgett-Robinson-Torrens Model
4.3 Displacement Generation Rate
4.4 Displacements Per Atom
4.5 Spatial Distribution of the Deposited Energy
4.6 Non-linear Cascades
4.6.1 Displacement Spike
4.6.2 Thermal Spike
4.7 Reactions of Radiation Induced Point Defects
4.8 Ion Radiation Enhanced Diffusion
4.9 Ion Beam-Induced Amorphization
4.9.1 Damage Buildup
4.9.2 Kinetics of Ion Beam Amorphization
4.9.3 Amorphization Models
4.10 List of Symbols
References
5 Sputtering
5.1 Sputtering Yield
5.2 Theoretical Aspects of Sputtering
5.3 Energy Dependence of the Sputtering Yield
5.4 Sputtering Parameters
5.4.1 Surface Binding Energy and Threshold Energy
5.4.2 Material Correction Factor
5.5 Semi-empirical Approaches to Calculate the Energy-Depend Sputtering Yield
5.6 Dependence of the Sputtering Yield on the Angle of Ion Incidence
5.7 Energy and Angular Distributions of the Sputtered Particles
5.7.1 Numerical Analysis of the Energy Distribution
5.7.2 Spatial Differential Sputtering Yield
5.8 Sputtering of Compounds—Preferential Sputtering
5.9 Measurement of the Sputtering Yields
5.9.1 Measurement of the Total Sputtering Yield
5.9.2 Measurement of Energy and Angular Distributions
5.10 Reflection
5.11 List of Symbols
References
Part II Applications
6 Evolution of Topography Under Low-Energy Ion Bombardment
6.1 Ion Beam-Induced Roughening
6.1.1 Roughness Evolution
6.1.2 Dynamic Scaling of the Roughness Evolution
6.1.3 Stochastic Growth Equations for Surface Erosion by Ion Bombardment
6.2 Formation of Surface Defects by Low-Energy Ion Irradiation
6.2.1 Defect Distribution and Defect Evolution After Ion Bombardment
6.2.2 Early Stages of the Formation of Surface Defects by Ion Impact
6.2.3 Formation of Extended Surface Defects
6.3 Low-Energy Ion Beam-Induced Surface Defects
6.3.1 Intra-crystalline Surface Defects
6.3.2 Inter-crystalline Surface Defects
6.4 Analysis of Surface Evolution Under Ion Bombardment
6.4.1 Kinematic Erosion Theory–Gradient-Dependent Sputtering
6.4.2 Method of Characteristics
6.5 Secondary Processes Contributing to Surface Evolution
6.5.1 Reflection of Ions Under Grazing Incidence
6.5.2 Re-deposition
6.5.3 Shadowing
6.5.4 Surface Diffusion
6.5.5 Non-uniform Ion Bombardment
6.5.6 Viscous Flow
6.5.7 Swelling
6.6 List of Symbols
References
7 Ion Beam Figuring and Smoothing
7.1 Ion Beam Figuring
7.1.1 The Principle of the IBF Method
7.1.2 Ion Beam Figuring Procedure
7.1.3 Temperature During Ion Beam Figuring Process
7.1.4 Ion Beam Figuring Applications
7.2 Ion Beam Smoothing
7.2.1 Atomistic Processes of Ion Beam Smoothing
7.2.2 Relevant Smoothing Mechanisms
7.2.3 Direct Ion Beam Smoothing of Material Surfaces
7.2.4 Ion Beam Smoothing with Planarization Layer
7.2.5 Glancing Angle Ion Beam Smoothing
7.3 List of Symbols
References
8 Low-Energy Ion Beam Bombardment-Induced Nanostructures
8.1 Nanoripples Produced by Low-Energy Ion Bombardment
8.1.1 Formation of Ripples Without Metallic Contamination
8.1.2 Formation of Ripples with Simultaneous Metallic Incorporation
8.1.3 Formation of Nanodot and Nanohole Patterns
8.2 Theoretical Concepts of Ion Beam-Induced Pattern Formation
8.2.1 Continuum Modelling
8.2.2 Crater Function Formalism
8.3 Formation of Ripples on Polycrystalline Surfaces
8.4 Application of Nanostructures Produced by Ion Beam Sputtering
8.4.1 Quantum Dots
8.4.2 Templates for Deposition of Thin Films and Nanostructures
8.4.3 Nanometric Pattern Transfer
8.4.4 Microelectronic Devices
8.4.5 Optically Active Nanostructures
8.4.6 Magnetic Films and Nanostructures
8.4.7 Wettability of Rippled Surfaces
8.5 List of Symbols
References
9 Ion Beam Deposition and Cleaning
9.1 Deposition by Direct Low-Energy Ion Bombardment
9.1.1 Process of Direct Ion Beam Deposition
9.1.2 Deposition of Polyatomic Ions
9.1.3 Role of Ion Energy
9.2 Film Growth by Direct Ion Beam Deposition
9.2.1 Experimental Studies for Film Growth by Ion Beam Deposition
9.2.2 Growth Processes
9.3 Synthesis of Films by Direct Ion Beam Deposition
9.3.1 Carbon and Diamond-Like Carbon Films
9.3.2 Epitaxial Silicon and Germanium Films
9.3.3 Metal Films
9.3.4 Compounds Films
9.4 Molecular Thin Film Deposition by Soft Landing
9.4.1 Deposition of Electrospray Ion Beams
9.4.2 Examples for the Deposition of Molecular Films
9.5 Ion Beam-Induced Cleaning of Surfaces
9.5.1 Ion Beam-Induced Cleaning Process
9.5.2 Models for Cleaning by Ion Bombardment of Thin Adsorbate Layers
9.6 List of Symbols
References
10 Ion Beam-Assisted Deposition
10.1 Ion Beam-Assisted Deposition Process
10.1.1 Generation of Ions and Atoms
10.1.2 Traveling Through the Gas Environment
10.2 Ion Beam-Assisted Thin Film Growth
10.2.1 Deposition Without Assisted Ion Beam Bombardment
10.2.2 Deposition Under Assisted Low-Energy Ion Bombardment
10.3 Thin Film Growth Under Assisted Ion Beam Bombardment
10.3.1 Influence of the Ion Energy
10.3.2 Influence of Temperature on Ion Beam-Assisted Thin Film Growth
10.3.3 Influence of the Ion-to-Atom Arrival Ratio
10.3.4 Simulation of IBAD Thin Film Growth
10.3.5 Epitaxial Growth by Ion Beam-Assisted Deposition
10.4 Morphology of Thin Films Prepared by IBAD
10.4.1 Roughness and Topography
10.4.2 Grain Size
10.5 Microstructure Evolution Under Assisted Low-Energy Ion Bombardment
10.5.1 Texture Development
10.6 Densification, Stress, and Adhesion
10.6.1 Transferred Momentum
10.6.2 Densification in Ion Beam-Assisted Thin Films
10.6.3 Residual Stress in Ion Beam-Assisted Thin Films
10.6.4 Measurement of Stress in Thin Films
10.6.5 Thermal Stress
10.6.6 Intrinsic Stress by Low-Energy Ion Irradiation
10.6.7 Intrinsic Stress in Thin Films Prepared by Ion Beam-Assisted Deposition
10.6.8 Models of Stress Evolution During Ion Beam-Assisted Thin Film Growth
10.6.9 Adhesion
10.7 Thin Film Synthesis by Concurrent Low Energy Ion Bombardment
10.7.1 Synthesis of Nitrides by IBAD
10.7.2 Synthesis of Oxides by IBAD
10.8 List of Symbols
References
11 Ion Beam Sputtering Induced Glancing Angle Deposition
11.1 Basic Mechanisms of Oblique Deposition
11.2 Experimental Realization of Sputter-Induced OAD and GLAD
11.3 Oblique Thin Film Growth
11.3.1 Modeling of the Oblique Film Growth
11.3.2 Growth on Isolated Seed Points
11.3.3 Growth of Sculptured Thin Films
11.4 Relation Between the Column Tilt Angle and the Angle of Particle Incidence
11.5 Growth on Patterned Substrates
11.5.1 Pattering Techniques
11.5.2 Arrays of High-Regular Nanostructures and Its Design
11.6 Applications of Films Prepared by Ion Sputter Induced Glancing Angle Deposition
11.6.1 Biosensors
11.6.2 Magnetic Nanotubes
11.7 List of Symbols
References
Appendix A
A.1 Thomas–Fermi Approximation for an Isolated Atom
Appendix B
B.1 Particle Movement in a Central Force Field
Appendix C
C.1 Polar, Cylindrical and Spherical Coordinates
Appendix D
D.1 Differential Rutherford Scattering Cross-Section
Appendix E
E.1 Reduced Stopping Power Cross-Section
Appendix F
F.1 Concentration Distribution After Ion Implantation
Appendix G
G.1 Influence of a Subsequent Annealing on the Implanted Concentration Profiles
Appendix H
H.1 Threshold Displacement Energy of Different Materials
Appendix I
I.1 Impact Parameter, Mean Free Path and Collision Number
Appendix J
J.1 Mean Energy of Sputtered Atoms
Appendix K
K.1 Particle Impingement Flux and Source Emission Characteristic
Appendix L
L.1 Statistical Analysis of Roughness and Roughness Measurement Techniques
Appendix M
M.1 Dynamic Scaling and Frequency Analysis
Appendix N
N.1 Ehrlich-Schwoebel Barrier and Edge Step Diffusion
Appendix O
O.1 Coefficients of the Surface Evolution Equations
List of Materials, Substances, and Microorganism
Index