Laser Cladding of Metals

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Laser cladding is an additive manufacturing technology capable of producing coatings due to the surface fusion of metals. The selected powder is fed into a focused laser beam to be melted and deposited as coating. This allows to apply material in a selected way onto those required sections of complex components. The process main properties are the production of a perfect metallurgically bonded and fully dense coatings; the minimal heat affected zone and low dilution between the substrate and filler material resulting in functional coatings that perform at reduced thickness, so fewer layers are applied; fine, homogeneous microstructure resulting from the rapid solidification rate that promotes wear resistance of carbide coatings; near net-shape weld build-up requires little finishing effort; extended weldability of sensitive materials like carbon-rich steels or nickel-based superalloys that are difficult or even impossible to weld using conventional welding processes; post-weld heat treatment is often eliminated as the small heat affected zone minimizes component stress; excellent process stability and reproducibility because it is numerical controlled welding process. The typical applications are the dimensional restoration; the wear and corrosion protection; additive manufacturing.

The wide range of materials that can be deposited and its suitability for treating small areas make laser cladding particularly appropriate to tailor surface properties to local service requirements and it opens up a new perspective for surface engineered materials. The main key aspect to be scientifically and technologically explored are the type of laser; the powders properties; the processing parameters; the consequent microstructural and mechanical properties of the processed material; the capability of fabrication of prototypes to rapid tooling and rapid manufacturing.

  • Distills critical concepts, methods, and applications from leading full-length chapters, along with the authors’s own deep understanding of the material taught, into a concise yet rigorous graduate and advanced undergraduate text;
  • Reinforces concepts covered with detailed solutions to illuminating and challenging industrial applications;
  • Discusses current and future applications of laser cladding in additive manufacturing.

Author(s): Pasquale Cavaliere
Publisher: Springer
Year: 2020

Language: English
Pages: 441
City: Cham

Preface
Contents
Nomenclature
Chapter 1: Laser Cladding – Additive Manufacturing
1.1 Introduction to Additive Manufacturing with Laser Cladding
1.2 Laser Cladding Setup for Additive Manufacturing
1.3 Process Parameters of Laser Cladding
1.4 Power-Based Laser Cladding with its Limitations and Possibilities
1.5 Creation of Multi-Material Components
1.6 Conclusion and Outlook
References
Chapter 2: Additive Manufacturing by Laser Cladding: State of the Art
2.1 Introduction
2.2 Materials for Laser Cladding
2.3 Clad Geometry
2.4 Textures and Microstructure Evolution
2.5 Laser Cladding Monitoring and Control
2.6 Conclusions
References
Chapter 3: Laser Cladding of Metals by Additive Manufacturing: Moving Toward 3D Printing
3.1 Introduction
3.2 Additive Manufacturing of Metals: Processes and Materials
3.2.1 Description of AM Processes
3.2.2 Common Alloys Currently Used for Additive Manufacturing of Metals
3.2.3 Common Potential Defects Forming during AM of Metals
3.3 Predictive Tools for Optimization of Metal AM Processes
3.3.1 Physics-Based Modeling
3.3.2 In Situ Monitoring and Control
3.4 Further Aspects of AM for Metals: Industrial Market and Current Challenges
3.4.1 Industrial Market: History and Outlook
3.4.2 Current Challenges
3.5 Conclusion
References
Chapter 4: CET Model to Predict the Microstructure of Laser Cladding Materials
4.1 Introduction
4.2 State of the Art
4.3 Modeling of Laser Cladding Process
4.3.1 Attenuation of Laser Beam on Subtract by Effect of the Powder Shadow
4.3.2 Energy and Mass Balance on the Substrate Surface by Interaction of Powder and Laser Beam
4.3.3 Energy Quantification for Powder Temperature by Use of Negative Enthalpy
4.3.4 Modeling of Phase Change for Inconel 718 and Temperature-Dependent Thermal Properties
4.3.5 Determination of Powder Temperature as Function of Laser Beam Power and Thermal Properties of Material
4.3.6 Effect of Change in Values of the Main Variables for Powder Attenuation over the Available Laser Beam Power for Substrate
4.3.7 Application of Energy Balance by Means of a General Type Heat Source on the Substrate to Obtain the Temperature Field
4.3.8 Determination of Melt Pool Temperatures as a Function of Attenuated Laser Beam and Thermal Properties of Material
4.3.9 Calculation of Temperature Gradient (GL) for Liquid Isotherm and the Grow Rate (V) in the Melt Pool
4.3.10 Metallurgy of Laser Cladding Process
4.4 Crystallization Model
4.4.1 Relationship Between a Solidification Map and Gäumann’s Crystallization Model
4.4.2 Objectives of the Crystallization Model
4.4.3 Model of Crystallization Based on Gäumann’s Model as a Probability Distribution
4.4.4 Deduction of the Crystallization Model Based on the cdf of Gumbel
4.4.4.1 Equivalence of ξ for the Crystallization Model Based on cdf of Gumbel
4.4.4.2 Deduction of μ and β for the Crystallization Model Based on cdf of Gumbel
Particularities of Solidification Maps
Proposed Method for the Deduction of β Based on the Solidification Map Parameter GL
Proposed Method for the Deduction of μ Based on the Solidification Map Parameter V
Physical Meaning of the Material Constant n with Respect to an Experimental Solidification Map
4.4.4.3 Modification of Parameters to Model the Volumetric Fraction ϕ for Low Solidification Speeds V
4.4.5 Summary of the Crystallization Model and Associated Parameters
4.4.6 Example of Application of the Model for the Experimental Solidification Map of Inconel 718
4.5 Application of the Model for a Metal Powder Reconditioning Method
4.5.1 Experimental Setup
4.5.2 Results
4.5.3 Discussion of the Results
4.6 Conclusions
Appendices
Appendix 1: Nomenclature and Abbreviations
Appendix 2: Method for Deduction of Number of Nucleation Sites per Unit of Volume (N0) for Laser Cladding Process
Importance of the Constant N0 and Its Relation to the Material Constant a for Crystallization Models
Proposed Method for the Deduction of N0 Based on EBSD Images
Results and Discussion
References
Chapter 5: Laser Additive Manufacturing of Single-Crystal Superalloy Component: From Solidification Mechanism to Grain Structure Control
5.1 Introduction
5.2 Laser Additive Manufacturing Techniques
5.3 Solidification Mechanism of SX via AM
5.4 Influence of Laser Processing Parameters
5.5 Influence of Substrate Conditions on Microstructure
5.6 Crack Formation Mechanism
5.7 Conclusion and Perspectives
References
Chapter 6: Laser Cladding: Fatigue Properties
6.1 Introduction
6.2 Microstructure of Laser Cladded Materials
6.3 Effect of Preheating
6.4 Effect of Residual Stresses
6.5 Fretting
6.6 Conclusions
References
Chapter 7: Corrosion Protection of Metal Alloys by Laser Cladding
7.1 Introduction
7.2 General Aspects of Electrochemical Corrosion
7.2.1 Thermodynamics and Kinetic Aspects
7.2.2 General and Localized Corrosion
7.2.3 Metals with Active–Passive Behavior
7.3 Corrosion Protection by Laser Cladding
7.3.1 Mechanism of Corrosion Protection
7.3.2 Cladding Systems
7.3.3 Selection of Laser Cladding Parameters
7.3.4 Feedstock Material
7.3.5 Nanostructured Laser Clad Coatings
7.3.6 Metallic Glasses/High Entropy Alloys
7.3.7 Sustainability Considerations
7.4 Laser Clad Corrosion Resistant Coatings
7.4.1 LC Coatings on Steel-Based Substrates
7.4.1.1 Laser Cladding on Mild Steel
7.4.1.2 Laser Cladding on Stainless Steel
7.4.2 LC Coating on Mg-Based Alloys
7.4.3 Optimization of Laser Clad Coating by Modeling
7.5 Conclusions
References
Chapter 8: Laser Cladding of Titanium Alloy
8.1 Introduction to Titanium Alloy
8.2 Backgrounds and Need for Laser Cladding of Titanium
8.2.1 Principle Behind Laser Cladding Process
8.3 Classification of Laser Cladding
8.3.1 Selective Laser Melting Process
8.3.2 Direct Metal Deposition Process
8.3.3 Wire Feeding Technique
8.4 Effect of Process Parameter on Laser Cladding
8.4.1 Effect of Laser Power and Scanning Speed on the Clad
8.4.2 Effect of Stand of Distance and Spot Diameter
8.5 Cladding Material System of Titanium Alloy
8.5.1 Pure Metal and Binary Alloy Coating with Titanium Alloy
8.5.2 Composite Cladding
8.5.3 Biocompatible Laser Cladding
8.5.4 Laser Cladding of Titanium with Rare Earth Element
8.6 Application and Development Tendency
8.6.1 Aerospace Application
8.6.2 Industrial Application
8.6.3 Consumer and Architectural Applications
8.6.4 Medical Applications
8.7 Current Research Trends and Scope of Future Work
References
Chapter 9: Improving Wear and Corrosion Performance of AISI 316L Stainless Steel Substrate in Liquid Zinc by MoB/CoCr and MoB/CoTi Gas Tungsten Arc Clad Composite Coatings
9.1 Introduction
9.2 Experimental Procedure
9.3 Results and Discussion
9.4 Conclusions
9.5 Conclusions
References
Chapter 10: Laser Cladding of Ti Alloys for Biomedical Applications
10.1 Introduction
10.2 Biomaterials
10.2.1 Metallic Biomaterials
10.2.1.1 Titanium and Its Alloys
Surface Modifications of Ti Alloys
10.2.2 Bioceramic Materials
10.2.2.1 Alumina
10.2.2.2 Zirconia
10.2.2.3 Bioactive Glass
10.2.2.4 Calcium Phosphates
10.3 Coating Techniques
10.4 Laser Surface Treatment (LST)
10.4.1 Different Laser Coating Methods for Surface Modification of Ti Alloys
10.4.1.1 Laser Surface Melting and Alloying
10.4.1.2 Laser Cladding
Different Methods of Laser Cladding
Paste Feeding
Injection Powder
Wire Feeding
Advantages and Disadvantages of Laser Cladding
Factors Affecting the Laser Cladding Process
Laser Cladding of Bioceramics – Calcium Phosphates
Ionic Substitution in Hydroxyapatite
Laser Cladding of Bioceramics – Ceramics and Bioglass Ceramics
10.5 Conclusion
References
Chapter 11: Laser Cladding of Ni-Based Superalloys
11.1 Introduction to Ni-Based Alloys
11.1.1 Classification of Ni-Based Superalloys
11.2 Introduction to Laser Cladding
11.3 Cooling Rate and Its Significance in Laser Cladding Process
11.3.1 Influence of Cooling Rate on Segregations in Ni-Based Superalloys
11.3.2 Effect of Elemental Segregation on Mechanical Properties
11.3.3 Parameters Affecting the Cooling Rate in Laser Cladding
11.3.4 Effect of Process Parameters and Cooling Rates on Surface Properties
11.4 Auxiliary Methods to Control Microstructure
11.4.1 Electromagnetic Field-Assisted Laser Cladding
11.4.2 Ultrasonic Vibration-Assisted Laser Cladding Process
11.4.3 Rare Earth Elements Added in Nickel Coatings
11.5 Metal Matrix Composite Coatings of Nickel-Based Alloys
11.6 Conclusion
References
Chapter 12: Laser Cladding of NiCr-Cr2C3 Coatings on a γ-TiAl Substrate
12.1 Introduction
12.2 Experimental Procedure
12.3 Results and Discussion
12.3.1 Effect of Processing Parameters on the Clad Height
12.3.2 Effect of Processing Parameters on the Clad Width
12.3.3 Effect of the Processing Parameters on Clad Geometrical Complexity
12.3.4 Effect of the Processing Parameters on Clad Physical Complexity
12.3.5 Single Pass Clad Penetration Depth
12.3.6 Single Pass Clad Dilution
12.3.7 Single Pass Clad Wetting Angle
12.3.8 Processing Map for Different Parameters
12.3.9 Assessment of the Optimal Clad
12.3.10 Microhardness of the Optimal Clad
12.4 Conclusions
References
Chapter 13: Laser Cladding of MCrAlY Alloys
13.1 Introduction
13.2 Materials and Laser Cladding Parameters for the MCrAlY Alloys
13.3 Microstructure of the MCrAlY Laser Clad Alloys
13.4 Mechanical Properties of the MCrAlY Laser Clad Alloys
13.5 The High-Temperature Oxidation Behavior of the MCrAlY Laser Clad Alloys
References
Chapter 14: Applications of Laser in Cold Spray
14.1 Introduction
14.2 Pre-laser Surface Treatment
14.3 In Situ Laser-Assisted Cold Spray (LACS)
14.3.1 Working Principle of LACS
14.3.2 Microstructures and Properties of LACS Coatings
14.4 Laser Posttreatment of Cold-Sprayed Coatings
14.4.1 Surface Morphology and Roughness Evolution
14.4.2 Microstructure and Phase Composition Evolution
14.4.3 In Situ Synthesis of Alloy or Composite Coatings Using Powder Mixtures
14.4.4 Hardness Evolution and Wear Property Enhancement
14.4.5 Improvement of Corrosion Property
14.5 Conclusions
References
Index