Joining Technology and Application of Advanced Materials

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

The book focuses on joining of advanced materials such as ceramics, intermetallics, laminated materials, composite materials and functional materials considering both in theory and in practice. It also covers details of joint design, weldability and quality assurance of the product. Both principles and engineering practice have been addressed to show advanced, scientific and novelty features. The latest research on advanced joining technology is one of the major features of the book, which is particularly suited for readers who are interested to learn practical solutions in joining of advanced materials. The book can benefit researchers, engineers and graduate students in the fields of joining, materials design and manufacturing, etc.

Author(s): Yajiang Li
Series: Advanced and Intelligent Manufacturing in China
Publisher: Springer-CIP
Year: 2023

Language: English
Pages: 472
City: Shanghai

Preface
Contents
1 Overview
1.1 Classification and Performance Characteristics of Advanced Materials
1.1.1 Classification of Advanced Materials
1.1.2 Performance Characteristics of Advanced Materials
1.2 Applications and Development Prospects of Advanced Materials
1.2.1 Advanced Ceramics
1.2.2 Intermetallic Compounds
1.2.3 Laminated Materials
1.2.4 Composite Materials
1.2.5 Functional Materials
Bibliography
2 Welding of Advanced Ceramic Materials
2.1 Performance Characteristics and Joining Problems of Ceramic Materials
2.1.1 Performance Characteristics of Structural Ceramics
2.1.2 Basic Requirements for Ceramic-to-Metal Joining
2.1.3 Problems with Ceramic-to-Metal Joining
2.1.4 Joining Methods of Ceramics and Metal
2.2 Weldability Analysis of Ceramic Materials
2.2.1 Welding Stress and Cracks
2.2.2 Interfacial Reactions and Interface Formation Processes
2.2.3 Bond Strength at the Diffusion Interface
2.3 Brazing of Ceramic to Metal Joints
2.3.1 Characteristics of Ceramic-to-Metal Brazed Joints
2.3.2 Surface Metallization Brazing of Ceramics and Metals
2.3.3 Active Metallization Brazing of Ceramics to Metals
2.3.4 Examples of Ceramic-to-Metal Brazing
2.4 Diffusion Bonding of Ceramics to Metals
2.4.1 Characteristics of Ceramic-to-Metal Diffusion Bonding
2.4.2 Process Parameters for Diffusion Bonding
2.4.3 Characteristics of the Al2 O3 Composite Ceramic/metal Diffusion Interface
2.4.4 Diffusion Bonding of SiC/Ti/SiC Ceramics
2.5 Electron Beam Welding of Ceramics to Metals
2.5.1 Characteristics of Electron Beam Welding of Ceramics and Metals
2.5.2 Processes for Electron Beam Welding of Ceramics to Metals
2.5.3 Example of Electron Beam Welding of Ceramics to Metals
Bibliography
3 Diffusion Welding of Composite Ceramics to Steel
3.1 Diffusion Welding Process of Composite Ceramics to Steel
3.1.1 Basic Properties of Al2O3–TiC Composite Ceramics
3.1.2 Process Characteristics of Composite Ceramic to Steel Diffusion Welding
3.1.3 Specimen Preparation and Test Methods for Diffusion Joints
3.2 Diffusion Welding of Al2O3–TiC Composite Ceramics and Q235 Steel
3.2.1 Interfacial Characteristics and Microhardness of Al2O3–TiC/Q235 Diffusion Welded Joint
3.2.2 Shear Strength of Al2O3–TiC/Q235 Diffusion Joint
3.2.3 Microstructure of Al2O3–TiC/Q235 Diffusion Welded Joint
3.2.4 Analysis of Precipitated Phases in the Interface Transition Zone
3.2.5 Effect of Process Parameters on the Microstructure of Al2O3–TiC/Q235 Diffusion Interface
3.3 Diffusion Welding of Al2O3–TiC Composite Ceramics with 18-8 Austenitic Steel
3.3.1 Interfacial Characteristics and Microhardness of the Al2O3–TiC/18-8 Diffusion Welding Joint
3.3.2 Shear Strength of Al2O3–TiC/18-8 Diffusion Joint
3.3.3 Microstructure of Al2O3–TiC/18-8 Diffusion Welded Joint
3.3.4 Analysis of Precipitated Phases in the Interface Transition Zone
3.3.5 Effect of Process Parameters on the Microstructure of the Al2O3–TiC/18-8 Diffusion Interface
3.4 Diffusion Welding of Al2O3–TiC Composite Ceramics and W18Cr4V High-Speed Steel
3.4.1 Diffusion Process Characteristics and Specimen Preparation
3.4.2 Interfacial Characteristics of Al2O3–TiC/W18Cr4V Diffusion Welded Joint
3.4.3 Shear Strength of the Al2O3–TiC/W18Cr4V Diffusion Welded Interface
3.4.4 Effect of Process Parameters on the Microstructure of the Interface Transition Zone
3.4.5 Crack Extension and Fracture Characteristics at the Al2O3–TiC/W18Cr4V Diffusion Welded Interface
Bibliography
4 Joining of Nickel–Aluminium and Titanium–Aluminium Intermetallic Compounds
4.1 Development and Properties of Intermetallic Compounds
4.1.1 Development of Intermetallic Compounds for Structures
4.1.2 Basic Properties of Intermetallic Compounds
4.1.3 Three Promising Intermetallic Compounds
4.1.4 Superplasticity of Ni–Al and Ti–Al Intermetallic Compounds
4.2 Welding of Ni–Al Intermetallic Compounds
4.2.1 Diffusion Bonding of NiAl Alloys
4.2.2 Fusion Welding of Ni3Al Intermetallic Compounds
4.2.3 Diffusion Bonding of Ni3Al to Carbon Steel (or Stainless Steel)
4.2.4 Diffusion Bonding and Vacuum Brazing of Ni3Al (IC10) Alloys
4.3 Welding of Ti–Al Intermetallic Compounds
4.3.1 Welding Characteristics of Ti–Al Intermetallic Compounds
4.3.2 Arc Welding of TiAl Intermetallic Compounds
4.3.3 Electron Beam Welding of TiAl Intermetallic Compounds
4.3.4 Diffusion Welding of TiAl and Ti3Al Alloys
4.3.5 Diffusion Bonding of TiAl Dissimilar Materials
Bibliography
5 Joining of Iron-Aluminium Intermetallic Compounds
5.1 Iron-Aluminium Intermetallic Compounds and Its Weldability
5.1.1 Characteristics of Iron-Aluminium Intermetallic Compounds
5.1.2 Weldability Characteristics of Iron-Aluminium Intermetallic Compounds
5.1.3 Cracking in the Fe3Al Welded Joint Area
5.2 Wire-Filled Tungsten Arc Welding of Fe3Al and Steel (Q235, 18–8 Steel)
5.2.1 Characteristics of the Tungsten Arc Welding Process of Fe3Al and Steel
5.2.2 Microstructure Characteristics of the Fe3Al/Steel Joint Zone of Filled Wire GTAW
5.2.3 Microhardness of the Fe3Al/Steel Filled Wire GTAW Joint
5.2.4 Shear Strength and Fracture Morphology of Fe3Al/Steel GTAW Joints
5.3 Vacuum Diffusion Welding of Fe3Al to Steel (Q235, 18-8 Steel)
5.3.1 Process Characteristics of Fe3Al/Steel Vacuum Diffusion Welding
5.3.2 Shear Strength of the Fe3 Al/Steel Diffusion Weld Interface
5.3.3 Microstructural Characteristics of the Fe3 Al/Steel Diffusion Weld Interface
5.3.4 Microhardness of Fe3Al/Steel Diffusion Welded Joints
5.3.5 Element Diffusion Near the Interface and Transition Zone Width
5.3.6 Effect of Process Parameters on the Interface Characteristics of Diffusion Welding
5.4 Other Welding Methods of Fe3Al Intermetallic Compounds
5.4.1 Electron Beam Welding of Fe3Al Intermetallic Compounds
5.4.2 Electrode Arc Welding of Fe3Al
5.4.3 Argon Arc Overlay Welding and Characteristics of Fe3Al
Bibliography
6 Welding of Laminated Materials
6.1 Characteristics and Weldability of Laminated Materials
6.1.1 Characteristics of Laminated Materials
6.1.2 Weldability Analysis of the of Laminated Materials
6.1.3 Research Status of Laminated Materials Welding
6.2 Wire-Filled GTAW of Laminated Materials
6.2.1 Process Characteristics of Wire-Filled GTAW of Laminated Materials
6.2.2 Fusion State of Welding Zone of Laminated Materials
6.2.3 Microstructure and Properties of Joint Between Laminated Material and 18–8 Steel
6.2.4 Process Characteristics of Diffusion Brazing of Laminated Materials
6.2.5 Bonding Interface of Laminated Composite/18–8 Steel Diffusion Brazed Joint
6.2.6 Microhardness of Laminated Composite/18–8 Steel Diffusion Brazed Joint
6.2.7 Shear Strength of Laminated Composite/18–8 Steel Diffusion Brazed Joint
Bibliography
7 Welding of Advanced Composites
7.1 Classification, Characteristics and Properties of Composite Materials
7.1.1 Classification and Characteristics of Composite Materials
7.1.2 Reinforcement of Composite Materials
7.1.3 Performance Characteristics of Metal Matrix Composites
7.2 Analysis of the Weldability of Composite Materials
7.2.1 Weldability of Metal Matrix Composites
7.2.2 Weldability of Resin Matrix Composites
7.2.3 Weldability of C/C Composites
7.2.4 Weldability of Ceramic Matrix Composites
7.3 Welding of Continuous Fiber Reinforced Metal Matrix Composites
7.3.1 Problems in Welding of Continuous Fiber Reinforced MMC
7.3.2 Joint Form Design for Continuous Fiber Reinforced MMC
7.3.3 Characteristics of Welding Process for Fiber Reinforced MMC
7.4 Welding of Discontinuously Reinforced Metal Matrix Composites
7.4.1 Welding Problems of Discontinuously Reinforced MMC
7.4.2 Welding Process Characteristics of Discontinuously Reinforced MMC
References
8 Connection of Functional Materials
8.1 Connection of Superconducting Materials to Metals
8.1.1 Performance Characteristics and Applications of Superconducting Materials
8.1.2 Connection Methods for Superconducting Materials
8.1.3 Characteristics of the Joining Process for Superconducting Materials
8.1.4 Welding of Oxide Ceramic Superconducting Materials
8.2 Shape Memory Alloy to Metal Connection
8.2.1 Characteristics and Applications of Shape Memory Alloys
8.2.2 Advances in the Welding of Shape Memory Alloys
8.2.3 Resistance Brazing of TiNi Shape Memory Alloys
8.2.4 Transition Liquid Phase Diffusion Welding of TiNi Alloy to Stainless Steel
References